The wavelength of a wave (λ) is given by λ

where c is the wave speed and f is the frequency
-- If the field were inclined to the surface, then it would have
some component parallel to the surface.
-- Then, since we're talking about a conductor, the charges
on the object would move in response to that component
of the field, until there was no longer any component of the
field trying to move them.
Answer:
Explanation:
N = 65
Area, A = 0.1 x 0.2 = 0.02 m^2
R = 10 ohm
ω = 29.5 rad/s
B = 1 T
(a) at t = 0
e = N x B x A x ω
e = 65 x 1 x 0.02 x 29.5
e = 38.35 V
(b) The maximum rate of change of magnetic flux is equal to the maximum value of induced emf.
Ф = 38.35 Wb/s
(c) e = NBAω Sinωt
e = 65 x 1 x 0.02 x 29.5 x Sin (29.5 x 0.05)
e = 38.174 V
(d) Maximum torque
τ = M B Sin 90
τ = N i A B
τ = N e A B / R
τ = 65 x 38.35 x 0.02 x 1 / 10
τ = 5 Nm
Answer:

Explanation:
Given:
Dielectric of the medium between the plates (k) = 6.56
Area of eac plate (A) = 0.0830 m²
Separation between the plates (d) = 1.95 mm = 0.00195 m [1 mm = 0.001 m]
Maximum electric field
= 202 kN/C = 202000 N/C [1 kN = 1000 N]
Permittivity of space (ε₀) = 8.854 × 10⁻¹² F/m
The maximum potential difference across the plates of the capacitor is given as:

Now, capacitance of the capacitor is given as:

The maximum energy stored in the capacitor is given as:

Therefore, the maximum energy that can be stored in the capacitor is 
Answer: 2 s
Explanation: In order to solve this problem we have to use the formule of the final speed getting with a constant acceleration, it is given by;
Vfinal=Vo+a*t where Vo is zero.
so then t=Vfinal/a = (10 m/s)/5 m/s^2= 2 s