<h3>
Answer:</h3>
0.819 mol Ag
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
4.93 × 10²³ atoms Ag
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.818665 mol Ag ≈ 0.819 mol Ag
I would believe the answer to this question is D. According to the concept of the tragedy of the commons, shared resources are used by more than one organism. Due to the large consumption of shared resources they start to be fewer and fewer in number and over time if we are not careful they will be depleted.
The answer for this question is 0.8
Answer:
C. The potential energy change for a chemical reaction.
Explanation:
The reaction coordinate q illustrates, graphically, the energy changes during exothermic and endothermic reactions. This graphical representation of the energy changes in the course of a chemical reaction is known as reaction coordinates. A reaction coordinate is a graphical sequence of steps by which the reaction progresses from reactants through activated complexes to products. Reaction coordinates explain how far a reaction has proceeded towards the products or from the reactants.
From the images attached below, we can see the reaction coordinates in the reaction profiles.
<span>
When air is warmed up, its molecules move faster and faster and as a
result they move further from each other. They still have the same
mass, but they now occupy a larger volume. This means that its density
is smaller.
The opposite when air is cooled off. The molecules slow down, get
closer together, occupy a smaller volume and therefore its density is
bigger.
When air is warmed up, it goes up. Once it's up there, is cools off and
goes back down. Near the heated surface the air gets warmed up again,
goes up, cools down, goes back down, and again and again.
that is called convection cells
</span>