1. First, move the decimal place until you have a number between 1 and 10. If you keep moving the decimal point to the right in 0.0000073 you will get 7.3.
2. Next, count how many places you moved the decimal point.
Answer is: the missing pressure is 1088.66 mmHg.
Gay-Lussac's Law states that the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
p₁/T₁ = p₂/T₂.
p₁ = 960 mmHg; pressure of the gas.
T₁ = 100°C + 273.15.
T₁ = 373.15 K; temperature of the gas.
T₂ = 150°C + 273.15.
T₂ = 423.15 K.
p₂ = p₁T₂/T₁.
p₂ = 960 mmHg · 423.15 K / 373.15 K.
p₂ = 1088.66 mmHg.
PH of acidic buffer = pKa + log [CH₃COONa - HCl] / [CH₃COOH + HCl]
pKa of CH₃COOH = 4.74
Concentration of acetic acid in buffer = 2.0 M
Concentration of sodium acetate = 1.0 M
Concentration of HCl must add = x
pH = 4.74 + log (1-x) / (2+x) = 4.11
x = concentration of HCl must be added = 0.43 M
number of moles of HCl = M * V = 0.43 * 1 = 0.43 mol
mass of HCl must be added = 0.43 * 36.5 = 15.7 g
Answer:-
0.231 moles
Explanation:-
From the question we are told that
Volume of HCl solution = 0.70 L
Strength of HCl solution = 0.33 M
Here M stands for molarity. Molarity is the number of moles of the substance present per Litre of solution. So in place of M we can write moles / L
Number of moles of HCl solution = Volume of HCl solution x Strength of HCl solution
= 0.70 L x 0.33 moles / L
= 0.231 moles.
0.231 moles of HCl are present in 0.70 L of a 0.33 M HCl solution