<span>The Answer </span>should be<span> .074 M</span>
Answer:
487.33 K.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant.
T is the temperature of the gas in K.
- If n is constant, and have two different values of (P, V and T):
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 5.4 atm, V₁ = 1.0 L, T₁ = 33°C + 273 = 306 K.
P₂ = 4.3 atm, V₂ = 2.0 L, T₂ =??? K.
<em>∴ T₂ = P₂V₂T₁/P₁V₁</em> = (4.3 atm)(2.0 L)(306 K)/(5.4 atm)(1.0 L) = <em>487.33 K.</em>
Answer:
The difference in the electronegativities of chlorine and boron is 3.0 - 2.0 = 1.0 ; the difference in between chlorine and carbon is 3.0 = 2.5 = 0.5 . Consequently, the B-Cl bond is more polar ; the chlorine atom asrries the partial negative charge because it has higher electronegativity .
Explanation:
hope it helps!
Answer:
a) distance is 4+7+1+8=20 blocks
b) displacement is 10 blocks
Explanation:
find displacement: x and y
x axis displacement = 4-1 = 3 blocks
y axis displacement = -7+8= 1 block
displacement = the square root of 3^2 + 1^2
= 9+1 = 10 blocks.
You can find the angle of displacement with respect to the initial position using trig identities, if you wish.