Answer:
290.82g
Explanation:
The equation for the reaction is given below:
2Al + 3H2SO4 -> Al2(SO4)3 + 3H2 now, let us obtain the masses of H2SO4 and Al2(SO4)3 from the balanced equation. This is illustrated below:
Molar Mass of H2SO4 = (2x1) + 32 + (16x4) = 2 + 32 +64 = 98g/mol
Mass of H2SO4 from the balanced equation = 3 x 98 = 294g
Molar Mass of Al2(SO4)3 = (2x27) + 3[32 + (16x4)]
= 54 + 3[32 + 64]
= 54 + 3[96] = 54 + 288 = 342g
Now, we can obtain the mass of aluminium sulphate formed by doing the following:
From the equation above:
294g of H2SO4 produced 342g of Al2(SO4)3.
Therefore, 250g of H2SO4 will produce = (250 x 342)/294 = 290.82g of Al(SO4)3
Therefore, 290.82g of aluminium sulphate (Al(SO4)3) is formed.
Answer:
water - Yes because the do drink water
Air - yes they need to breath or alse they would not do good
warmth - yes or they die from coldness
Light - yes to get there food
soil - yes nution for there roots
Explanation:
Hopes it helps
Answer:
C. 1.17 grams
Explanation:
- The molarity is the no. of moles of solute in a 1.0 L of the solution.
<em>M = (mass/molar mass)solute x (1000/ V)</em>
M = 0.1 M, mass = ??? g, molar mass of NaCl = 58.44 g/mol, V = 200.0 mL.
∴ mass of NaCl = (M)(molar mass)(V)/1000 = (0.1 M)(58.44 g/mol)(200.0 mL)/1000 = 1.168 g ≅ 1.17 g.
Answer:
The jewelry is 2896.54_Kg/m^3 less dense than pure silver
Explanation:
Density of jewellery = (mass of jewellery) ÷ (volume of jewellery)
=3.25g ÷ 0.428mL = 0.00325Kg÷0.000000428m^3 = 7583.46Kg/m^3
The density of silver is 10490_Kg/m^3 which is (10490 - 7583.46) 2896.54_Kg/m^3 more dense than the jewellery
The density of Silver [Ag]
The weight of Silver per cubic centimeter is 10.49 grams or the weight of silver per cubic meter is 10490 kilograms, that is the density of silver is 10490 kg/m³; at 20°C (68°F or 293.15K) at a pressure of one atmospheres.