Answer:
yes, in certain cases
there are different types of bondings between atoms
and in some they lend electrons to make their atom stable this type of bonding is called ionic bonding
and in covalent bond the atoms share their electrons
Answer:
These three factors are required for ionization potential or ionization energy.
Explanation:
Ionization potential refers to the amount of energy which is required for the removal of outermost electron of the atom. If the atom size is big so the outermost electron is far from the nucleus and low energy is required for its removal due to lower force of attraction between nucleus and outermost electron. If the nuclear charge is higher, so the electron is tightly held by the nucleus and require more energy for its removal. Nuclear charge means number of protons present in the nucleus.
<span>rutherfordium element # 104</span>
The general formula for alkenes is CnH2n, the formula with hydrogen count double the carbon count should be the correct formula for alkene and that is d. C3H6.
What are alkenes?
Alkenes, commonly known as olefins, are organic unsaturated hydrocarbons that have one or more carbon-carbon double bonds in their chemical structure and are composed of carbon and hydrogen atoms.
Alkenes are unsaturated hydrocarbons with a double bond between the carbon atoms. Carbon atoms are connected by at least one double bond. The general formula for alkenes is C n H 2n. Olefin is frequently substituted with alkenes. The word "olefin" comes from the Greek phrase "olefin gas," which denotes the production of oil.
<u>Since, their general formula is CnH2n, the formula with hydrogen count double the carbon count should be the correct formula for alkene and that is d. C3H6.</u>
To learn more about alkenes from the given link below,
brainly.com/question/27179090
#SPJ4
Answer: 2948
Explanation:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
Expression for rate law for first order kinetics is given by:
where,
k = rate constant =
t = age of sample = ?
a = let initial amount of the reactant = 100
a - x = amount left after decay process = 
Thus the fossil is 2948 years old.