Answer:
a) 2.933 m
b) 4.534 m
Explanation:
We're given the equation
v(t) = -0.4t² + 2t
If we're to find the distance, then we'd have to integrate the velocity, since integration of velocity gives distance, just as differentiation of distance gives velocity.
See attachment for the calculations
The conclusion of the attachment will be
7.467 - 2.933 and that is 4.534 m
Thus, The distance it travels in the second 2 sec is 4.534 m
Answer:
The balanced condition for Wheat stones bridge is
Q
P
=
S
R
as is obvious from the given values.
No, current flows through galvanometer is zero.
Now, P and R are in series, so
Resistance,R
1
=P+R
=10+15=25Ω
Similarly, Q and S are in series, so
Resistance R
2
=R+S
=20+30=50Ω
Net resistance of the network as R
1
and R
2
are in parallel
i=
R
V
=
50
6×3
=0.36 A.
Explanation:
Answer:

Explanation:
<u>Relation between stress and Force:</u>

<u>Relation between stress and strain:</u>
Young's modulus is defined by the ratio of longitudinal stress σ , to the longitudinal strain ε:


So:

Explanation:
In the given situation two forces are working. These are:
1) Electric force (acting in the downward direction) = qE
2) weight (acting in the downward direction) = mg
Therefore, work done by all the forces = change in kinetic energy
Hence,
It is known that the weight of electron is far less compared to electric force. Therefore, we can neglect the weight and the above equation will be as follows.

v = 
= 592999 m/s
Since, the electron is travelling downwards it means that it looses the potential energy.
Answer:
PART A)
External force will be 75 N
PART B)
distance moved will be 1.125 m
Explanation:
PART A)
Given that net force on the mower is

now we also know that friction force due to ground is given as

now we have



so external force will be 75 N
PART B)
deceleration due to friction when external force is removed from it


now we can find the distance by kinematics



so the distance moved will be 1.125 m