Bumper of a stationary bumper car. The momentum of the
stationary car increases. Which happens to the momentum of the moving bumper
car? It decreases. It stays the same. It is converted to inertia.
Bumper of a stationary bumper car. The momentum of the
stationary car increases. The momentum of the moving bumper car It is converted
to inertia.
Answer:
<em>The bullet was 0.52 seconds in the air.</em>
Explanation:
<u>Horizontal Motion
</u>
It occurs when an object is thrown horizontally with a speed v from a height h.
The object describes a curved path ruled exclusively by gravity until it hits the ground.
To calculate the time the object takes to hit the ground, we use the following equation:

Note it doesn't depend on the initial velocity but on the height.
The bullet is fired horizontally at h=1.3 m, thus:


t = 0.52 s
The bullet was 0.52 seconds in the air.
When a neutron or a proton in the nucleus changes a gamma ray is produced (gamma rays are electromagnetic waves)
When an electron drops from a higher energy level to a lower energy level an electromagnetic wave is give off.
Answer:
7.5Watts
Explanation:
Given parameters:
Force of lift = 25N
Height = 3.6m
Time = 12s
Unknown:
Power output = ?
Solution:
Power is the rate at which work is done ;
Power =
Power =
= 7.5Watts
Move the decimal point to:
Left : (if the exponent of ten is a negative number -) ... OUR CASE HERE (-2)
or to
Right : (if the exponent is positive +).
You should move the point as many times as the exponent indicates.
Do not write the power of ten anymore.
So, standard form is:
Two points to the left {Exponent of Ten is Negative (-2)}
0.059 ... (without the 10)