Answer: The unit of impulse is applied to an object produces an equivalent vector change in its linear momentum, also in the same direction.
Explanation:
<h3>
Answer:</h3>
<h3>
Explanation:</h3>
_______________
λ=500 nm = 500·10⁻⁹ m
c=3·10⁸ m/s
h=6,63·10⁻³⁴ J·s = 4,14·10⁻¹⁵ eV·s
_______________
E - ?
_______________

The train travells at he speed of 225 km/2.5h
now
225km=225000m
2.5 hr=150min=9000s
=>avg sp of train is=225000/9000s=25m/s
Answer:
13 m/s
Explanation:
Given:
Δy = 8.2 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: v
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (9.8 m/s²) (8.2 m)
v = 12.7 m/s
Rounded to two significant figures, the speed is 13 m/s.
Hello!
For the explanation of this energy conservation exercise, where we'll use <u>energy conservation law</u>, let's see what this principle proposes.
How you should know, mechanical energy conserves in every point, that is to say mechanical energy is same in A point like B point. (Mechanical energy will be represented by "Me")
Once time we know that, let's take the 220 Joules momentum like A point, and when 55 Joules momentum like B point.
Then, let's use the <u>energy conservation principle:</u>
Me(A) = Me(B)
- We know Mechanical energy in A point, so just lets replace according to our data:
220 J = Me(B)
- In B point, we know kinetic energy, but <u>we dont know gravitational potential energy</u>, so lets descompose Mechanical energy, into kinetic energy and gravitational potential energy:
220 J = Ke + Gpe
- We know kinetic energy value, so lets replace it:
220 J = 55 J + Gpe
- Finally, just clean Gpe and resolve it:
Gpe = 220 J - 55 J = 165 J
Gravitational potential energy is of One hundred sixty five Joules <u>(165 J).</u>
║Sincerely, ChizuruChan║