1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marin [14]
3 years ago
6

Apply Pascal's law to a ketchup packet. Explain what will happen if you tear a small

Physics
2 answers:
vivado [14]3 years ago
6 0

Answer:

its will explode because it's like a soda with baking soda added together and you shake it the small hole can make a huge explosion

umka2103 [35]3 years ago
6 0

Answer:

yes

Explanation:

yes

You might be interested in
Which statement best describes the skier?
Olegator [25]

its c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

8 0
3 years ago
Read 2 more answers
Which of the following represents the greatest energy transition from a higher energy level to a lower one?
prohojiy [21]
You need to use Planck's law:
E = h·υ = (h·c)/λ

Without making all the calculations, a fraction is bigger than another when the denominator is smaller. Therefore you need to find the smallest wavelength (λ) which is 450nm.

You could also be helped by colors: in order of decreasing energy, you have blue - green - yellow - red.

In any case, the correct answer is a).
8 0
3 years ago
Help on finding kinetic energy??
Jobisdone [24]
Trick question? In order to have kinetic energy, an object must be moving. Therefore, in this case, kinetic energy would be 0. If it were asking about potential energy, it would be a different story. 
8 0
3 years ago
Read 2 more answers
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz. Find the possible range of wavelengths in ai
taurus [48]

Answer:

The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.

Explanation:

Given that,

The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.

The speed of sound in air is 343 m/s.

To find,

The wavelength range for the corresponding frequency.

Solution,

The speed of sound is given by the following relation as :

v=f_1\lambda_1

Wavelength for f = 45 Hz is,

\lambda_1=\dfrac{v}{f_1}

\lambda_1=\dfrac{343}{45}=7.62\ m

Wavelength for f = 375 Hz is,

\lambda_2=\dfrac{v}{f_2}

\lambda_2=\dfrac{343}{375}=0.914\ m/s

So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.

6 0
3 years ago
Your friend thinks that the escape speed should be greater for more massive objects than for less massive objects. Provide an ar
Brrunno [24]

Answer:

Concepts and Principles

1- Kinetic Energy: The kinetic energy of an object is:

K=1/2*m*v^2                                                         (1)  

where m is the object's mass and v is its speed relative to the chosen coordinate system.  

2- Gravitational potential energy of a system consisting of Earth and any object is:  

 U_g = -Gm_E*m_o/r*E-o                                   (2)  

where m_E is the mass of Earth (5.97x 10^24 kg), m_o is the mass of the object, and G = 6.67 x 10^-11 N m^2/kg^2 is Newton's gravitational constant.  

Solution  

The argument:  

My friend thinks that escape speed should be greater for more massive objects than for less massive objects because the gravitational pull on a more massive object is greater than the gravitational pull for a less massive object and therefore the more massive object needs more speed to escape this gravitational pull.  

The counterargument:  

We provide a mathematical counterargument. Consider a projectile of mass m, leaving the surface of a planet with escape speed v. The projectile has a kinetic energy K given by Equation (1):

K=1/2*m*v^2                                                         (1)  

and a gravitational potential energy Ug given by Equation (2):  

Ug = -G*Mm/R

where M is the mass of the planet and R is its radius. When the projectile reaches infinity, it stops and thus has no kinetic energy. It also has no potential energy because an infinite separation between two bodies is our zero-potential-energy configuration. Therefore, its total energy at infinity is zero. Applying the principle of energy consersation, we see that the total energy at the planet's surface must also have been zero:  

K+U=0  

1/2*m*v^2 + (-G*Mm/R) = 0

1/2*m*v^2 =  G*Mm/R

1/2*v^2 = G*M/R

solving for v we get

v = √2G*M/R

so we see v does not depend on the mass of the projectile

8 0
3 years ago
Other questions:
  • A 55 newton force applied on an object moves the object 10 meters in the same direction as the force. What is the value of work
    8·2 answers
  • Peter notices that his eight-year-old daughter frequently mentions the unusual habits of a new boy, who is from a different cult
    6·1 answer
  • A current carrying wire wrapped around an iron ore is called a
    6·1 answer
  • 1. A car with a mass of 1,500 kilograms is moving around a circular curve at a uniform velocity of 16 m/s. The curve has a radiu
    7·2 answers
  • Which of the following is most likely to be the best conductor of electricity?
    12·1 answer
  • What is solar wind i ask that you help me
    9·1 answer
  • A piano tuner sounds two strings simultaneously. One has been previously tuned to vibrate at 293.0 Hz. The tuner hears 3.0 beats
    13·1 answer
  • A CIRCULAR COIL OF 20 TURNS OF RADIUS 10.0 cm IS PERPENDICULAR TO A 0.30 tesla MAGNETIC FIELD. HOW MUCH INDUCED emf IS CREATED W
    6·1 answer
  • 1.) A ball is thrown horizontally from the top of a building. What is the vertical velocity of the ball after 1 second?
    14·2 answers
  • A astronaut exploring an asteroid jumps from a 10 meter tall cliff and lands
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!