1) Balanced chemical equation:
2SO2 (g) + O2 (g) -> 2SO3 (l)
2) Molar ratios
2 mol SO2 : 1 mol O2 : 2 mol SO3
3) Convert 6.00 g O2 to moles
number of moles = mass in grams / molar mass
number of moles = 6.00 g / 32 g/mol = 0.1875 mol O2.
4) Use proportions with the molar ratios
=> 2 moles SO2 / 1 mol O2 = x / 0.1875 mol O2
=> x = 0.1875 mol O2 * 2 mol SO2 / 1 mol O2 = 0.375 mol SO2.
5) Convert 0.375 mol SO2 to grams
mass in grams = number of moles * molar mass
molar mass SO2 = 32 g/mol + 2*16 g/mol = 64 g/mol
=> mass SO2 = 0.375 mol * 64 g / mol = 24.0 g
Answer: 24.0 g of SO2 are needed to react completely with 6.00 g O2.
In a solid the particles are all really close together and stuck like that. As the solid melts and becomes a liquid the particles spread out. A solid won’t easily change its shape because the particles are bound together but in a liquid the shape is more fluid, take water when you pour it into a container it will change to fit the shape of a container this is because the particles aren’t as close and can move around. The particles of a solid change when it melts because it is changing states to a liquid.
The answer is: Dividing the number of molecules in the sample by Avogadro's number.
The Avogadro’s number is the number of atoms in 12 grams of the isotope carbon-12 (¹²C).
Na is Avogadro number or Avogadro constant (the number of particles, in this example carbon, that are contained in the amount of substance given by one mole).
The Avogadro number has value 6.022·10²³ 1/mol in the International System of Units; Na = 6.022·10²³ 1/mol.
For example:
N(Ba) = 2.62·10²³; number of atoms of barium.
n(Ba) = N(Ba) ÷ Na.
n(Ba) = 1.3·10²⁴ ÷ 6.022·10²³ 1/mol.
n(Ba) = 2.158 mol; amount of substance of barium.
The radiation emitted is a beta particle with a -1 charge. <span>Beta particles have a </span><span>medium penetrating power. An emission of beta particles requires shielding because of the hazards it pose to humans. Thus, one characteristic of this radiation is that some shielding is required.</span>