Given:
Ma = 31.1 g, the mass of gold
Ta = 69.3 °C, the initial temperature of gold
Mw = 64.2 g, the mass of water
Tw = 27.8 °C, the initial temperature of water
Because the container is insulated, no heat is lost to the surroundings.
Let T °C be the final temperature.
From tables, obtain
Ca = 0.129 J/(g-°C), the specific heat of gold
Cw = 4.18 J/(g-°C), the specific heat of water
At equilibrium, heat lost by the gold - heat gained by the water.
Heat lost by the gold is
Qa = Ma*Ca*(T - Ta)
= (31.1 g)*(0.129 J/(g-°C)(*(69.3 - T °C)-
= 4.0119(69.3 - T) j
Heat gained by the water is
Qw = Mw*Cw*(T-Tw)
= (64.2 g)*(4.18 J/(g-°C))*(T - 27.8 °C)
= 268.356(T - 27.8)
Equate Qa and Qw.
268.356(T - 27.8) = 4.0119(69.3 - T)
272.3679T = 7738.32
T = 28.41 °C
Answer: 28.4 °C
Answer:
Chemical bonds are the connections between atoms in a molecule. These bonds include both strong intramolecular interactions, such as covalent and ionic bonds. They are related to weaker intermolecular forces, such as dipole-dipole interactions, the London dispersion forces, and hydrogen bonding.
Ans: a blood protein produced in response to and counteracting a specific antigen. Antibodies combine chemically with substances which the body recognizes as alien, such as bacteria, viruses, and foreign substances in the blood.
Answer:
A carboxylate salt and water
Explanation:
A carboxylic acid is an organic compound that has general formula RCOOH, where R is a carbon chain. Because it's an acid, the neutralization will happen when it reacts with a base, such as NaOH.
When this reaction occurs, the base will dissociate in Na⁺ and OH⁻, and the acid will ionize in RCOO⁻ and H⁺, so the products will be RCOO⁻Na⁺ (a carboxylate salt) and H₂O (water).
Answer:
About 1.48 M.
Explanation:
The formula for molarity is mol/L.
So firstly, you must find the amount of moles in 250 grams of NaCl.
I do this by using stoichiometry. First, I find how nany grams are in a single mole of NaCl. This is around 58.44 grams/mole. Now that I know this, I can now use a stoich table. (250 g NaCl * 1 mol NaCl / 58.44 g NaCl). I plug this into my calculator.
I get that 250 grams of NaCl is equal to about 4.28 moles.
Now I just plug into the formula!
4.28 moles/2.9 L = about 1.48
<em><u>I've</u></em><em><u> </u></em><em><u>attached</u></em><em><u> </u></em><em><u>a </u></em><em><u>picture </u></em><em><u>of </u></em><em><u>my </u></em><em><u>personal </u></em><em><u>notes </u></em><em><u>below </u></em><em><u>which </u></em><em><u>shows </u></em><em><u>work </u></em><em><u>I </u></em><em><u>have </u></em><em><u>done</u></em><em><u> </u></em><em><u>in </u></em><em><u>similar </u></em><em><u>equations.</u></em>