Answer:
C: 4
H: 1
Mg: 2
O : 6
Explanation:
You can quickly find out the number of valence electrons by looking at where the element is on the periodic table and referring to the table that is attached.
Answer:
18.0 Ampere is the size of electric current that must flow.
Explanation:
Moles of electron , n = 550 mmol = 0.550 mol
1 mmol = 0.001 mol
Number of electrons = N

Charge on N electrons : Q

Duration of time charge allowed to pass = T = 49.0 min = 49.0 × 60 seconds
1 min = 60 seconds
Size of current : I



18.0 Ampere is the size of electric current that must flow.
Answer:
C. 0.4.
Explanation:
<em>∵ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) = (no. of moles acetic acid)/(no. of moles of acetic acid + no. of moles of water).</em>
<em></em>
- no. of moles of acetic acid = 2, no. of moles of water = 3.
- Total no. of moles = no. of moles of acetic acid + no. of moles of water = 2 + 3 = 5.
<em>∴ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) =</em> (2)/(5)<em> = 0.4.</em>
Answer:
625 mL
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V₁) = 250 mL
Molarity of stock solution (M₁) = 5 M
Molarity of diluted solution (M₂) = 2 M
Volume of diluted solution (V₂) =?
The volume of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
5 × 250 = 2 × V₂
1250 = 2 × V₂
Divide both side by 2
V₂ = 1250 / 2
V₂ = 625 mL
Therefore, the volume of the diluted solution is 625 mL.
Answer:
B
Explanation:
by simlfying it you get HCO2