The magnet needs to be held above the coils of wires
Answer:
The position of my house is a little uphill as compared to the position of my school. The distance I have to travel from my house to school is nearly 2 kilometers. The displacement is in the 2000 m towards the left from my house. The speed of the bus which I usually take is 40 km/ hour.
Answer:
Answer. to final velocity 'v' =10.9 m/s in time 't' = 2.37 secs. So acceleration = -7.09 m/sec^2 or, decceleration is 7.09 m/sec^2
Explanation:
Answer:The velocity of the object will be 5
m/s or 13.23m/s
Explanation:
force exerted by the object= 30N
distance displayed by the object by the action of force=6.0m
mass of object=10kg
velocity gained by the object=?

The final velocity of skater 1 is 3.7 m/s to the right. The right option is O A. 3.7 m/s to the right.
<h3>What is velocity?</h3>
Velocity can be defined as the ratio of the displacement and time of a body.
To calculate the final velocity of Skater 1 we use the formula below.
Formula:
- mu+MU = mv+MV............ Equation 1
Where:
- m = mass of the first skater
- M = mass of the second skater
- u = initial velocity of the first skater
- U = initial velocity of the second skater
- v = final velocity of the first skater
- V = final velocity of the second skater.
make v the subject of the equation.
- v = (mu+MU-MV)/m................ Equation 2
Note: Let left direction represent negative and right direction represent positive.
From the question,
Given:
- m = 105 kg
- u = -2 m/s
- M = 71 kg
- U = 5 m/s
- V = -3.4 m/s.
Substitute these values into equation 2
- v = [(105×(-2))+(71×5)-(71×(-3.4))]/105
- v = (-210+355+241.4)/105
- v = 386.4/105
- v = 3.68 m/s
- v ≈ 3.7 m/s
Hence, the final velocity of skater 1 is 3.7 m/s to the right. The right option is O A. 3.7 m/s to the right.
Learn more about velocity here: brainly.com/question/25749514