Answer:
The net power needed to change the speed of the vehicle is 275,000 W
Explanation:
Given;
mass of the sport vehicle, m = 1600 kg
initial velocity of the vehicle, u = 15 m/s
final velocity of the vehicle, v = 40 m/s
time of motion, t = 4 s
The force needed to change the speed of the sport vehicle;

The net power needed to change the speed of the vehicle is calculated as;
![P_{net} = \frac{1}{2} F[u + v]\\\\P_{net} = \frac{1}{2} \times 10,000[15 + 40]\\\\P_{net} = 275,000 \ W](https://tex.z-dn.net/?f=P_%7Bnet%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20F%5Bu%20%2B%20v%5D%5C%5C%5C%5CP_%7Bnet%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2010%2C000%5B15%20%2B%2040%5D%5C%5C%5C%5CP_%7Bnet%7D%20%3D%20275%2C000%20%5C%20W)
Answer:
The rms voltage (in V) measured across the secondary coil is 459.62 V
Explanation:
Given;
number of turns in the primary coil, Np = 375 turns
number of turns in the secondary coil, Ns = 1875 turns
peak voltage across the primary coil, Ep = 130 V
peak voltage across the secondary coil, Es = ?

The rms voltage (in V) measured across the secondary coil is calculated as;

Therefore, the rms voltage (in V) measured across the secondary coil is 459.62 V
<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>1</u>
- Initial velocity=u=0m/s
- Final velocity=v=10m/s
- Time=10s=t




<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>2</u>
- initial velocity=0m/s=u
- Final velocity=v=0.25m/s
- Time=t=2s



Person-1 is accelerating faster.
Answer:
D. 3 hours or more
Explanation:
The average 8- to 18-year-old spends at least D. 3 hours every day in front of a screen, performing little to no physical activity. This is because, instead of exercising and socializing with their peers, children and teenagers frequently talk, watch a lot of movies/shows, or play video games on their computers. Unfortunately, this is typically considerably more than three hours every day. Although some children still prefer physical activities over this, the bulk of the population does not.
For electrical devices . . .
Power dissipated = (voltage) x (current) =
(12 V) x (3.0 A) = 36 watts .
1 watt means 1 joule per second
(36 joule/sec) x (60 sec/min) x (10 min) = 21,600 joules