Answer:
E = 0 r <R₁
Explanation:
If we use Gauss's law
Ф = ∫ E. dA =
/ ε₀
in this case the charge is distributed throughout the spherical shell and as we are asked for the field for a radius smaller than the radius of the spherical shell, therefore, THERE ARE NO CHARGES INSIDE this surface.
Consequently by Gauss's law the electric field is ZERO
E = 0 r <R₁
Answer: c. A person who gains unauthorized access to digital data
Explanation:
0.495 m/s
Explanation
the formula for the terminal velocity is given by:
![\begin{gathered} v=\sqrt[]{\frac{2mg}{\sigma AC}} \\ \text{where} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2mg%7D%7B%5Csigma%20AC%7D%7D%20%5C%5C%20%5Ctext%7Bwhere%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient
then
Step 1
Let's find the mass

now, replace
![\begin{gathered} v=\sqrt[]{\frac{2mg}{\sigma AC}} \\ v=\sqrt[]{\frac{2(0.002kg)(9.81\text{ }\frac{m}{s^2})}{(2\cdot10^3\frac{\operatorname{kg}}{m^3})(0.0001m^2)0.8}} \\ v=\sqrt[]{\frac{0.03924\frac{\operatorname{kg}m}{s^2}}{0.16\frac{\operatorname{kg}}{m^{}}}} \\ v=\sqrt[]{0.2452\frac{m^2}{s^2}} \\ v=0.495\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2mg%7D%7B%5Csigma%20AC%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2%280.002kg%29%289.81%5Ctext%7B%20%7D%5Cfrac%7Bm%7D%7Bs%5E2%7D%29%7D%7B%282%5Ccdot10%5E3%5Cfrac%7B%5Coperatorname%7Bkg%7D%7D%7Bm%5E3%7D%29%280.0001m%5E2%290.8%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.03924%5Cfrac%7B%5Coperatorname%7Bkg%7Dm%7D%7Bs%5E2%7D%7D%7B0.16%5Cfrac%7B%5Coperatorname%7Bkg%7D%7D%7Bm%5E%7B%7D%7D%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B0.2452%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D%7D%20%5C%5C%20v%3D0.495%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
hence, the answer is 0.495 m/s
Answer:

Explanation:
In order to solve this problem, we mus start by drawing a free body diagram of the given situation (See attached picture).
From the free body diagram we can now do a sum of forces in the x and y direction. Let's start with the y-direction:



so:

now we can go ahead and do a sum of forces in the x-direction:

the sum of forces in x is 0 because it's moving at a constant speed.



so now we solve for theta. We can start by factoring mg so we get:

we can divide both sides into mg so we get:

this tells us that the problem is independent of the mass of the object.

we now divide both sides of the equation into
so we get:


so we now take the inverse function of tan to get:

so now we can find our angle:

so

Answer:
second is the SI unit of time