Complete Question
The complete question is shown on the first uploaded image
Answer:
Explanation:
From the question we are told that
The tension is
The length of the wire is 
The mass is 
Generally the frequency is mathematically represented as

=> 
=> 
Approx. 983274984065823796374 meters away
The distance traveled by plane flying at 1200 Km/h for 2.5 hours is 3000 Km.
Velocity is a vector quantity. It has both a direction and a magnitude. Speed is used to calculate the magnitude of velocity. The meter per second is the S.I. unit for this. The units km/h and km/s are additional units. [LT-1] is the dimensional equation for it.
The distance traveled by the object is calculated as the product of the velocity with which it was moving and the time interval for which the distance covered is calculated.
Distance traveled = Velocity × Time
Given in the question
Velocity of the plane = 1200 Km/h
Time Traveled = 2.5 h
Put in the value, we get
Distance traveled = 1200 × 2.5
Distance traveled = 3000 Km
Hence, the distance traveled by plane flying at 1200 Km/h for 2.5 hours is 3000 Km.
LEARN MORE ABOUT VELOCITY HERE:
brainly.com/question/6504879
#SPJ9
EVEN IF they can build such a machine, it's not too useful.
-- If the wind starts and stops, your car would do the same thing.
-- If the wind isn't blowing at all, your car is going nowhere. (and fast)
-- You could never move along the road faster than the wind is moving along the road.
-- You could never move in the direction towards where the wind is coming from. This has been proven before, with the technological marvel known as the "sailboat".
Call your broker immediately. Tell him you do NOT want to buy any stock in CarCompany.
Answer:
Firstly they are, by design, easy to use in most scientific and engineering calculations; you only ever have to consider multiples of 10. If I’m given a measurement of 3.4 kilometres, I can instantly see that it’s 3′400 metres, or 0.0034 Megametres, or 3′400′000 millimetres. It’s not even necessary to use arithmetic, I just have to remember the definitions of the prefixes (“kilo” is a thousand, “megametre” is a million, “milli” is a thousandth) and shift the decimal point across to the left or the right. This is especially useful when we’re considering areas, speeds, energies, or other things that have multiple units; for instance,
1 metre^2 = (1000millimetre)^2 = 1000000 mm^2.
If we were to do an equivalent conversion in Imperial, we would have
1 mile^2 = (1760 yards)^2
and we immediately have to figure out what the square of 1760 is! However, the fact that SI is based on multiples of 10 has the downside that we can’t consider division by 3, 4, 8, or 12 very easily.
Secondly they are (mostly) defined in terms of things that are (or, that we believe to be) fundamental constants. The second is defined by a certain kind of radiation that comes from a caesium atom. The metre is defined in terms of the second and the speed of light. The kelvin is defined in terms of the triple point of water. The mole is the number of atoms in 12 grams of carbon-12. The candela is defined in terms of the light intensity you get from a very specific light source. The ampere is defined using the Lorentz force between two wires. The only exception is the kilogram, which is still defined by the mass of a very specific lump of metal in a vault in France (we’re still working on a good definition for that one).
Thirdly, most of the Imperial and US customary units are defined in terms of SI. Even if you’re not personally using SI, you are probably using equipment that was designed using SI.