The empirical formula is the same as the molecular formula : C₁₀H₅O₂
<h3>Further explanation</h3>
Given
Molecular formula : C₁₀H₅O₂
Required
The empirical formula
Solution
The empirical formula (EF) is the smallest comparison of atoms of compound forming elements.
The molecular formula (MF) is a formula that shows the number of atomic elements that make up a compound.
(empirical formula) n = molecular formula
<em>(EF)n=MF
</em>
(EF)n = C₁₀H₅O₂
If we divide by the number of moles of Oxygen (the smallest) which is 2 then the moles of Hydrogen will be a decimal number (not whole), which is 2.5, then the empirical formula is the same as the molecular formula
'Acceleration' means any change in speed or direction
of motion.
so
C). No acceleration. Straight, at constant speed.
No change of speed or direction.
Increasing temperatures in a reaction increases the kinetic energy of the reactant molecules. This causes them to move fast and hence collide with a higher frequency. The higher the rate of collision between the molecules, the faster the reaction.
Explanation:
For the given reaction:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

![Rate=k[CO]^x[H_2]^y](https://tex.z-dn.net/?f=Rate%3Dk%5BCO%5D%5Ex%5BH_2%5D%5Ey)
where x and y are order wrt to
and 
According to collision theory , the molecules must collide for a reaction to take place. According to collision theory , the rate of a reaction is proportional to rate of collision of reactants.
Thus with an increase in concentration of reactants , the rate of reaction also increases. This is because if the concentration of reactants increases , the chances of collision between molecules also increases and thus more products wil be formed which in turn increases the rate of reaction.
Answer: 50. 4g
Explanation:
First calculate number of moles of aluminium in 38.8g
Moles = 38.8g/ 26.982mol/g
= 1.44mol
By looking at the balance equation you can see that 4 moles of aluminium produce 2 moles of aluminium oxide.
4 = 2
1.4 = x
Find the value of x
x= (1.4×2)/4= 0.72 mol
0.72 moles of aluminium oxide are produced from 38.8g of aluminium
Now find the mass of aluminium produced.
Mass = moles × molar mass
= 0.72mol × 69.93 mol/g
= 50.4g