The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
Answer:
1.8 moles of NaCl must be produced.
Explanation:
Based on the reaction:
HCl + NaOH → NaCl + H2O
<em>1 mol of HCl reacts with 1 mol of NaOH to produce 1mol of NaCl</em>
<em />
To solve this question we must find, as first, the <em>limiting reactant:</em>
<em />
1.8 moles of HCl will need 1.8 moles of NaOH for a complete reaction (Ratio of reaction 1:1). As there are 3.3 moles of NaOH,
<em>HCl is limiting reactant</em>
<em />
When the 1.8 moles of HCl react completely,
1.8 moles of NaCl must be produced because 1 mole of HCl produce 1 mole of NaCl
Nearly all life on Earth gets its energy from the sun, and the sun gets its energy through the process of nuclear fusion, which is why these type of energy is important to life on Earth.