Answer:
35,000,000,000 mL
Explanation:
You first multiply 35 times 1000.
35,000 L
Now you multiply 35,000 times 10^6
35,000,000,000 mL
Answer:
0.143 g of KCl.
Explanation:
Equation of the reaction:
AgNO3(aq) + KCl(aq) --> AgCl(s) + KNO3(aq)
Molar concentration = mass/volume
= 0.16 * 0.012
= 0.00192 mol AgNO3.
By stoichiometry, 1 mole of AgNO3 reacts with 1 mole of KCl to form a precipitate.
Number of moles of KCl = 0.00192 mol.
Molar mass of KCl = 39 + 35.5
= 74.5 g/mol
Mass = molar mass * number of moles
= 74.5 * 0.00192
= 0.143 g of KCl.
<u>Answer:</u> The specific heat of metal is 0.821 J/g°C
<u>Explanation:</u>
When metal is dipped in water, the amount of heat released by metal will be equal to the amount of heat absorbed by water.

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of metal = 30 g
= mass of water = 100 g
= final temperature = 25°C
= initial temperature of metal = 110°C
= initial temperature of water = 20.0°C
= specific heat of metal = ?
= specific heat of water = 4.186 J/g°C
Putting values in equation 1, we get:
![30\times c_1\times (25-110)=-[100\times 4.186\times (25-20)]](https://tex.z-dn.net/?f=30%5Ctimes%20c_1%5Ctimes%20%2825-110%29%3D-%5B100%5Ctimes%204.186%5Ctimes%20%2825-20%29%5D)

Hence, the specific heat of metal is 0.821 J/g°C
Answer: The net change in the atoms is the conversion of a neutron to a proton, turning Carbon (6 protons) into Nitrogen (7 protons).
Explanation:
Carbon-14, generated from the atmosphere, has 6 protons and 8 neutrons. That's where the 14 comes from, called the mass number, is the sum of protons and neutrons (6+8=14).
Carbon-14 is radioactive and decays by beta decay. That means one of its neutrons spontaneously turns into a proton, an electron, and a neutrino, according to:

After that, the atom has 7 protons and 7 neutrons, maintaining its mass number but changing its atomic number from 6 to 7, turning into Nitrogen.