Answer:
The chemical equation by putting, a 2 on C₅H₁₂O, 15 on O₂, 10 on CO₂ , and 12 on H₂O in the equation;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Explanation:
- Chemical equations are balanced by putting coefficients on the reactants and products to ensure the total number of atoms on the left side equal to those on the right side.
- Balancing chemical equations is done to make chemical equations obey the law of conservation of mass.
- According to the law of conservation of mass, the mass of the reactants should always be equal to the mass of products.
- This is done by balancing chemical equations to ensure the total number of atoms on the left side is equal to that on the right side.
- Therefore, the balanced equation is;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
In a simple distillation setup, the sequence of equipment from the bench top to the round bottom flask is:
- Thermometer
- Distillation flask
- Round bottom flask
- Bunsen burner
<h3>What is Distillation?</h3>
This is the process in which a mixture is separated through selective boiling and condensation.
The distillation flask and liebig condenser are usually located above the round bottom flask in the set up.
Read more about Distillation here brainly.com/question/24553469
#SPJ4
A metallic conductor moving at a constant speed in a magnetic field may develop a voltage across it. This is an example of Motional emf
Hope this helps!
Carbon is the element at the heart of all organic compounds, and it is such a versatile element because of its ability to form straight chains, branched chains, and rings. Because these chains and rings can have all sorts of different functional groups in all sorts of different ways (giving the compond all sorts of different physical and chemical properties), carbon's ability to form the backbone of these large structures is critial to the existence of most chemical compounds known to man. Above all, the organic molecules crucial to the biochemical systems that govern living organisms depend on carbon compounds.
Answer:
yesakskakakakakakkawbajajjakaak