Answer:
Tc = = 424.85 K
Explanation:
Data given:
D = 60 mm = 0.06 m

k = 50 w/m . k
c = 500 j/kg.k





HEAT FLOW Q is


= 47123.88 w per unit length of rod
volumetric heat rate





= 424.85 K
Answer:
Heat losses by convection, Qconv = 90W
Heat losses by radiation, Qrad = 5.814W
Explanation:
Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:
1. Radiation
2. Conduction
3. Convection
Convection is defined as the transfer of heat through the actual movement of the molecules.
Qconv = hA(Temp.final - Temp.surr)
Where h = 6.4KW/m2K
A, area of a square = L2
= (0.25)2
= 0.0625m2
Temp.final = 250°C
Temp.surr = 25°C
Q = 64 * 0.0625 * (250 - 25)
= 90W
Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.
Qrad = E*S*(Temp.final4 - Temp.surr4)
Where E = emissivity of the surface
S = boltzmann constant
= 5.6703 x 10-8 W/m2K4
Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)
= 5.814 W
A single car has about 30,000 parts, counting every part down to the smallest screws
Answer:
v = 1.076 m /s
Explanation:
Initial volume of balloon = 4/3 x 3.14 x (9.905/2)³
=508.56 m³
Final volume of balloon = 4/3 x 3.14 x (16.502/2)³
= 2351.73 m³
Increase in volume = 1843.17 m³
Cross sectional area of inlet A = 3.14 x( 1.458/2)²
A = 1.6687 m²
Volume rate of flow of air = cross sectional area x velocity of inflow
= 1 .6687 V [ V is velocity of inflow ]
Total time taken = Increase in volume / rate of flow of air
17.108 X 60 = 1843.17 / 1.6687 V
V = 
v = 1.076 m /s
Answer:
the relation between load , shear force and bending moment is
shear force in a beam is calculated by the differentiation of the loading with respect to distance or length of the beam

Bending moment in a beam is define as the change of shear force diagram with respect to the length of the beam.

and where as
where V is the shear force , x is the distance in the beam , M is the bending moment and w is the loading on the beam.