Answer:
Similarities: both state the mass of chemical species and they have the same numerical value
Differences: molecular mass refers to one single molecule and molar mass refers to one mole of a molecule
Explanation:
The molecular mass is the value of the mass of each molecule and it is measured in mass units (u). It is calculated adding the mass of each atom of the molecule.
The molar mass is the value of the mass of one mole of molecules, which means the mass of 6.022140857 × 10²³ molecules. The unit is g/mol.
For example, we can consider the methane molecule, which has the chemical formula of CH₄:
Molecular mass CH₄ = C mass + 4 x (H mass)
Molecular mass CH₄ = 12.01 + 4 x (1.01)
Molecular mass CH₄ = 16.05 u
Now to calculate the molar mass we multiply the value of the molecular mass by the Avogadro number and convert the units to g/mol:
Molar mass CH₄: 16.05 x
x 6.022140857 × 10²³ mol⁻¹
Molecular mass CH₄ = 16.05 g / mol
<span>It is the valence orbit that controls the electrical properties of the atom. The valence electron is referred to as a "free electron.' Valence electrons have the highest energy of all electrons in an atom; they are also the most reactive, meaning they are usually the electrons involved in bonding. When silicon atoms combine to form a solid, they arrange themselves into an orderly pattern called a crystal.</span>
Answer: Li is the reducing agentg and O is the oxidizing agent.
Explanation:
1) The oxidizing agent is the one that is reduced and the reducing agent is the one that is oxidized.
2) The given reaction is:
4Li(s) + O₂ (g) → 2 Li₂O(s)
3) Determine the oxidation states of each atom:
Li(s): oxidation state = 0 (since it is alone)
O₂ (g): oxidation state = 0 (since it is alone)
Li in Li₂O (s) +1
O in Li₂O -2
That because 2× (+1) - 2 = 0.
4) Determine the changes:
Li went from 0 to + 1, therefore it got oxidized and it is the reducing agent.
O went from 0 to - 2, therefore it got reduced and it is the oxidizing agent.
Answer:
For a good consert mix aggregate needed to the clean hard strong partical free of absorb chemicals or coating clay and other fine materials