When the value of Ksp = 3.83 x 10^-11 (should be given - missing in your Q)
So, according to the balanced equation of the reaction:
and by using ICE table:
Ag2CrO4(s) → 2Ag+ (Aq) + CrO4^2-(aq)
initial 0 0
change +2X +X
Equ 2X X
∴ Ksp = [Ag+]^2[CrO42-]
so by substitution:
∴ 3.83 x 10^-11 = (2X)^2* X
3.83 x 10^-11 = 4 X^3
∴X = 2.1 x 10^-4
∴[CrO42-] = X = 2.1 x 10^-4 M
[Ag+] = 2X = 2 * (2.1 x 10^-4)
= 4.2 x 10^-4 M
when we comparing with the actual concentration of [Ag+] and [CrO42-]
when moles Ag+ = molarity * volume
= 0.004 m * 0.005L
= 2 x 10^-5 moles
[Ag+] = moles / total volume
= 2 x 10^-5 / 0.01L
= 0.002 M
moles CrO42- = molarity * volume
= 0.0024 m * 0.005 L
= 1.2 x 10^-5 mol
∴[CrO42-] = moles / total volume
= (1.2 x 10^-5)mol / 0.01 L
= 0.0012 M
by comparing this values with the max concentration that is saturation in the solution
and when the 2 values of ions concentration are >>> than the max values o the concentrations that are will be saturated.
∴ the excess will precipitate out
Answer:
helium protons and electrons determine the atomic number and helium has the lowest
It should follow the law of conservation . A balanced chemical equation occurs when the number of atom in the reactants is equal to the products side
Answer:
there is only one pic
Explanation:
but if its oki can u type itt
The sun is a luminous object while the moon is a non luminous object it only reflect the light from the sun... It takes 8.5 minutes for the light coming form the sun to reach the earth, it takes 1.3light seconds for the moon to reflect the light coming from the sun to the earth... The sun is a star while the moon is a satellite both the sun and the moon are round in shape... The sun has an outer temperature of about 6000°C while there is no breeze in the moon...
Comment for more....