Answer:
Haptens.
Explanation:
Haptens are known as small molecules that help to stimulate the production of antibody molecules when attached with a large molecule known as a carrier molecule such as proteins.
Haptens are used to study the mechanism of inflammatory bowel disease to help induce the autoimmune type of responses and allergic contact dermatitis.
Answer:
Your lungs are part of the respiratory system.
Explanation:
A group of organs and tissues that work together to help you breathe.The respiratory system's main job is to move fresh air into your body while removing waste gases.
Was this helpful?
If so let me know and please mark me brainiest.
Answer:
Option (D) is definitely the answer.
Explanation:
Before going further, it is important to know what buffers and pH represent, which are keywords to answering this question.
Buffers is a special solution that can withstand or resist changes due to pH levels which may be as a result of an introduction of acidic or basic components into the blood. In other words, they maintain the stability of pH level in the human blood.
pH blood levels on the other hand, can be grouped into three: acidity, neutrality and alkalinity. Using a pH scale, one can determine its current level. In the human blood the pH level is near neutral and needs to be on a level near 7.4 in order to avoid a high rise or a drastic fall even if acidic or basic components come in or departs the blood stream.
Therefore, if one of the buffers that contributes to pH stability in human blood is carbonic acid, which is as a result of a combination of carbon dioxide and water in the blood stream. On getting to the lungs it is converted to water and subsequently released as waste. Maintaining this stability will definitely be to decrease the concentration of carbonic acid and increase that of water instead.
The original sample was a compound because it was composed of two different elements and was not purely one element
Answer:
Explanation:
Ba(s) + Mn²⁺ (aq,1M) → Ba²⁺ (aq,1M) + Mn(s)
Ba⁺²(aq) +2e → Ba(s) , E° = −2.90 V
Mn⁺²(aq) +2e → Mn(s), E⁰ =0.80 V
Anode reaction :
Ba(s) → Ba⁺²(aq) +2e E° = −2.90 V
Cathode reaction :
Mn⁺²(aq) +2e → Mn(s) E⁰ =0.80 V
Cell potential = Ecathode - Eanode
Ecell = .80 - ( - 2.90 )
Ecell = 3.7 V .
equilibrium constant ( K ) :
Ecell = .059 log K / n
n = 2
3.7 = .059 log K / 2
log K = 125.42
K = 2.63 x 10¹²⁵ .
Free energy change :
ΔG = - n F Ecell
= - 2 x 96500 x 3.7
= 714100 J
= 7.141 x 10⁵ J .