Explanation:
The Gabriel synthesis is a chemical reaction that transforms primary alkyl halides into primary amines. Traditionally, the reaction uses potassium phthalimide. ... The alkylation of ammonia is often an unselective and inefficient route to amines. In the Gabriel method, phthalimide anion is employed as a surrogate of H2N−.
Answer:
No, it is not sufficient
Please find the workings below
Explanation:
Using E = hf
Where;
E = energy of a photon (J)
h = Planck's constant (6.626 × 10^-34 J/s)
f = frequency
However, λ = v/f
f = v/λ
Where; λ = wavelength of light = 325nm = 325 × 10^-9m
v = speed of light (3 × 10^8 m/s)
Hence, E = hv/λ
E = 6.626 × 10^-34 × 3 × 10^8 ÷ 325 × 10^-9
E = 19.878 × 10^-26 ÷ 325 × 10^-9
E = 19.878/325 × 10^ (-26+9)
E = 0.061 × 10^-17
E = 6.1 × 10^-19J
Next, we work out the energy required to dissociate 1 mole of N=N. Since the bond energy is 418 kJ/mol.
E = 418 × 10³ ÷ 6.022 × 10^23
E = 69.412 × 10^(3-23)
E = 69.412 × 10^-20
E = 6.9412 × 10^-19J
6.9412 × 10^-19J is required to break one mole of N=N bond.
Based on the workings above, the photon, which has an energy of 6.1 × 10^-19J is not sufficient to break a N=N bond that has an energy of 6.9412 × 10^-19J
Answer: The momentum of the child and milk together is 58.125 kg.m/s
Explanation:
Momentum is defined as the product of object's mass and velocity.
Mathematically,

where, p = momentum
m = mass of the object
v = velocity of the object
In the given question, we are given that a child of mass 21.0 kg is carrying a gallon of milk having mass 2.25 kg and running with a velocity of 2.5 m/s. Hence, the momentum by both milk and child will be:
....(1)
Given:

Putting values in equation 1, we get:

Hence, the momentum of the child and milk together is 58.125 kg.m/s
Answer:
Option D. pH= 1.3 strong acid
Explanation:
From the question given:
The hydrogen ion concentration [H+] = 0.05 M
pH = —Log [H+]
pH = —Log 0.05
pH = 1.3
Since the pH lies between 0 and 7, the solution is acidic. Since the pH value is low, the solution is a strong acid