Answer:
The acceleration of the box is 3 m/s²
Explanation:
Given;
mass of the box, m = 12 kg
horizontal force pulling the box forward, Fx = 48 N
frictional force acting against the box in opposite direction, Fk = 12 N
The net horizontal force on the box, F = 48 N - 12 N
The net horizontal force on the box, F = 36 N
Apply Newton's second law of motion to determine the acceleration of the box;
F = ma
where;
F is the net horizontal force on the box
a is the acceleration of the box
a = F / m
a = 36 / 12
a = 3 m/s²
Therefore, the acceleration of the box is 3 m/s²
Here is your answer
b) 
REASON :
We know that
Velocity= Frequency× Wavelength
So,
Frequency= Velocity/wavelength
Here,
V= 3× 10^8 m/s
Wavelength= 2×10^-3 m
Hence,
Frequency= 3×10^8/2×10^-3
= 3/2 × 10^11
= 1.5× 10^11 Hz
HOPE IT IS USEFUL
Power dissipation = (voltage across the component)² / (resistance of the component)
Since the resistance is in the denominator of the fraction in this formula for the
quantity of power dissipated, you can see that when the supply voltage is constant,
the smaller resistance dissipates more power.
So the <u>60w bulb</u> has lower resistance than the 40w bulb.
In order to answer this, we will set up a simple ratio as such:
1 calorie = 4.184 joules
1 kilocalorie = 1000 calories
1 kilocalorie = 4,184 joules
250 kilocalories = x joules
Cross multiplying the second and third equations, we get:
x joules = 4,184 * 250
250 kilocalories are equivalent to 1,046 kJ
Answer:
Plato, Aristotle developed it further and used for 1400 years till Copernicus.
Explanation: