The two objects with electrical charges interact, which affect the strength of that interaction <span>amount of charge. The answer is letter A. The rest of the choices do not answer the question above.</span>
The formula is F = ( q1 * q2 ) / r ^ 2
<span>where: q is the individual charges of each ion </span>
<span>r is the distance between the nuclei </span>
<span>The formula is not important but to explain the relationship between the atoms in the compounds and their lattice energy. </span>
<span>From the formula we can first conclude that compounds of ions with greater charges will have a greater lattice energy. This is a direct relationship. </span>
<span>For example, the compounds BaO and SrO, whose ions' charges are ( + 2 ) and ( - 2 ) respectively for each, will have greater lattice energies that the compounds NaF and KCl, whose ions' charges are ( + 1 ) and ( - 1 ) respectively for each. </span>
<span>So Far: ( BaO and SrO ) > ( NaF and KCl ) </span>
<span>The second part required you find the relative distance between the atoms of the compounds. Really, the lattice energy is stronger with smaller atoms, an indirect relationship. </span>
<span>For example, in NaF the ions are smaller than the ions in KCl so it has a greater lattice energy. Because Sr is smaller than Ba, SrO has a greater lattice energy than BaO. </span>
<span>Therefore: </span>
<span>Answer: SrO > BaO > NaF > KCl </span>
Answer:
Sorry don't know the answer
Mechanical energy = potential energy + kinetic energy
The ball is on the ground so it has no potential energy. that's all i know.
Answer:
Atomic radius decreases moving from left to right across a period.
Explanation:
When we move left to right across a period, the size of atoms generally decreases. It is because within the period the outer electrons are in same valence shell and the number of electrons and proton increases moving from left to right across the the period. It increases the effective nuclear charge resulting in the increased attraction of electron to the nucleus that causes the decreased radius of the atoms.