Deuterium is a relatively uncommon form of hydrogen, but can be created from water.
- Heavy hydrogen commonly known as deuterium
- stable isotopes of hydrogen
- gets its name from the Greek word deuterons means second.
- has only one proton and one neutron
- nucleus of the hydrogen's deuterium atom is known as a deuteron containing one proton and one neutron.
- Deuterium forms chemical bonds that are stronger than regular hydrogen
- gas deuterium is colorless
- Deuterated water is used in Magnetic Resonance Spectroscopy.
- used in the determination of the isotopologue of various organic compounds.
- used in Infrared Spectroscopy.
To know more about Deuterium visit : brainly.com/question/27870183
#SPJ4
Answer:
Option A. KCl (aq)
Option D. Mg(OH)₂(s
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
MgCl₂(aq) + KOH(aq) —>
In solution, MgCl₂(aq) and KOH(aq) will dissociate as follow:
MgCl₂(aq) —> Mg²⁺(aq) + 2Cl¯(aq)
KOH(aq) —> K⁺(aq) + OH¯(aq)
MgCl₂(aq) + KOH(aq) —>
Mg²⁺(aq) + 2Cl¯(aq) + 2K⁺(aq) + OH¯(aq) —> 2K⁺(aq) + 2Cl¯(aq) + Mg(OH)₂ (s)
MgCl₂(aq) + KOH(aq) —> 2KCl (aq) + Mg(OH)₂(s)
Thus, the products of the above reaction are: KCl(aq) and Mg(OH)₂(s)
Thus, option A and D gives the correct answer to the question.
According to the task, you are proveded with patial pressure of CO2 and graphite, and here is complete solution for the task :
At first you have to find n1 =moles of CO2 and n2 which are moles of C
<span>The you go :
</span>

n1 n2 0
-x -x +2x

After that you have to use the formula

Then you have to solve x, and for that you have to use <span>RT/V
And to find total values:</span>

I am absolutely sure that this would be helpful for you.
Answer:
kau kje nk senang je kan . gi cari jawapan dlm buku la
Explanation:
aku x nk jwb . benda bole cri kt buku . ni la anak zmn skg ni . semua nk mudah
Answer:
The volume of CO2 produced is 6.0 L (option D)
Explanation:
Step 1: Data given
Volume of oxygen = 3.0 L
Carbon monoxide = CO = in excess
Step 2: The balanced equation
2 CO (g) + O2 (g) → 2 CO2 (g)
Step 3: Calculate moles of O2
1 mol of gas at STP = 22.4 L
3.0 L = 0.134 moles
Step 3: Calculate moles of CO2
For 2 moles CO we need 1 mol of O2 to produce 2 moles of CO2
For 0.134 moles O2 we'll have 2*0.134 = 0.268 moles CO2
Step 4: Calculate volume of CO2
1 mol = 22.4 L
0.268 mol = 22.4 * 0.268 = 6.0 L
The volume of CO2 produced is 6.0 L