Answer:
Answer:
Number of Significant Figures: 5
The Significant Figures are 3 0 6 7 0
Explanation:
hope this helps
Explanation:
Metals are the species which readily lose electrons in order to attain stability. This electron lost by the atom is actually present in its outermost shell which is also known as valence shell.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period.
But when we move down a group then there occurs an increase in atomic size of the atoms due to addition of number of electrons in the atoms. Hence, ionization energy decreases along a group.
Thus, we can conclude that metals have low ionization energies and readily share their valence or outer electrons with each other to form an electron sea. These electrons are delocalized or shared among all the atoms that are bonded together and can therefore move freely throughout the metal structure.
Answer:
212.304 grams
Explanation:
similar to your other question, use the same formula
q=mCpΔT
23617=m(4.182)(46.6-20)
23617=111.2412m
m=212.304g
Answer:
See explanation
Explanation:
According to Bronsted-Lowry, an acid is a proton donor while a base is a proton acceptor.
Hence, if we consider the reaction above, we will notice that for each base there is a conjugate acid and for each acid there is a conjugate base.
For the acid HNO3, its conjugate base is NO3^- while for the acid H3O^+, its conjugate base is H2O.