Answer:
The element with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5 is manganese (25Mn).
Explanation:
Step 1: Data given
The element with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5
has 25 electrons.
This element has 2 electrons on the first shell, 8 electrons on the second shell, 13 electrons on the third shell and 2 electrons on the outer shell (valence electrons).
This means this element is part of group VII.
The element with 25 electrons, we can find on the periodic table, with atomic number 25.
The element with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5 is manganese (25Mn).
Answer:
We need 12.26 grams H2SO4
Explanation:
Step 1: Data given
Volume of a H2SO4 solution = 500 mL = 0.500 L
Concentration of the H2SO4 solution = 0.250 M
Molar mass of H2SO4 = 98.08 g/mol
Step 2: Calculate moles H2SO4
Moles H2SO4 = concentration * volume
Moles H2SO4 = 0.250 M * 0.500 L
Moles H2SO4 = 0.125 moles
Step 3: Calculate mass of H2SO4
Mass of H2SO4 = moles * molar mass
Mass of H2SO4 = 0.125 moles * 98.08 g/mol
Mass of H2SO4 = 12.26 grams
We need 12.26 grams H2SO4
Answer: 2.48×10^-17 J
Explanation:
Given the following :
Wavelength = 8nm (8 x 10^-9 m)
Energy(e) of X-ray =?
Energy=[speed of light(c) × planck's constant (h)] ÷ wavelength
Speed of light = 3×10^8m/s
Planck's constant = 6.626×10^-34 Js
Wavelength = 8 x 10^-9 m
Energy = [(3×10^8) * (6.626×10^-34)] / 8 x 10^-9
Energy = [19.878×10^(8-34)] / 8 x 10^-9
Energy = 2.48475 × 10^(-26+9)
Energy = 2.48×10^-17 J
a) NH₃ molecules have stronger intermolecular attractions than CH₄ molecules.
Explanation:
Ammonia molecules have stronger intermolecular attractions compared to methane.
Ammonia molecules have london dispersion forces and hydrogen bonds between their molecules.
Methane molecules have only london dispersion forces in their structure.
- hydrogen bonds are very strong attractive forces between molecules in which the hydrogen of a molecule is attracted by a more electronegative atom of another usually oxygen, nitrogen and fluorine.
- London dispersion forces are weak forces of attraction between heteronuclear atoms.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly
Answer and Explanation:
I think the thing that is wrong with this chemical equation is that there is 0 by the 2 instead of the letter O.
Other than that, everything would be balanced.
<em><u>#teamtrees #PAW (Plant And Water)</u></em>