Answer:
Mass percent N₂ = 89%
Mass percent H₂ = 11%
Explanation:
First we <u>use PV=nRT to calculate n</u>, which is the total number of moles of nitrogen and hydrogen:
- 1.03 atm * 7.45 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 305 K
So now we know that
- MolH₂ + MolN₂ = 0.307 mol
and
- MolH₂ * 2 g/mol + MolN₂ * 28 g/mol = 3.49 g
So we have a <u>system of two equations and two unknowns</u>. We use algebra to solve it:
Express MolH₂ in terms of MolN₂:
- MolH₂ + MolN₂ = 0.307 mol
Replace that value in the second equation:
- MolH₂ * 2 g/mol + MolN₂ * 28 g/mol = 3.49
- (0.307-MolN₂) * 2 + MolN₂ * 28 = 3.49
- 0.614 - 2MolN₂ + 28molN₂ = 3.49
Now we calculate MolH₂:
- MolH₂ + MolN₂ = 0.307 mol
Finally, we convert each of those mol numbers to mass, to <u>calculate the mass percent</u>:
- N₂ ⇒ 0.111 mol * 28 g/mol = 3.108 g N₂
- H₂ ⇒ 0.196 mol * 2 g/mol = 0.392 g H₂
Mass % N₂ = 3.108/3.49 * 100% = 89.05% ≅ 89%
Mass % H₂ = 0.392/3.49 * 100% = 11.15% ≅ 11%
Answer:

when there is a radical in the denominator, we should rationalize (mutiply the denominator and numerator by the radical) to get rid of the radical in the denominator.
1,000 mL/ 1 L
Your last option
I think number 47 on the map would be New Mexico i hope i helped out
The correct answer is option C, that is, it is reduced.
In reduction and oxidation reactions, reduction refers to the loss of an oxygen atom from a molecule or the gaining of one or more electrons. A reduction reaction is observed from the perspective of the molecule being reduced, as when one molecule gets reduced, another one gets oxidized. The complete reaction is called a redox reaction.
In the given case, iron gains electrons mean that it is reduced.