Answer:The citric acid cycle is the final common pathway for the aerobic oxidation of fuel molecules. Moreover, as we will see shortly (Section 17.3) and repeatedly elsewhere in our study of biochemistry, the cycle is an important source of building blocks for a host of important biomolecules. As befits its role as the metabolic hub of the cell, entry into the cycle and the rate of the cycle itself are controlled at several stages.
Explanation:
I hope this helps.
the first line would be SN, 50, 50, 69
second line would be PT, 78, 78, 117
third line would be MO, 42, 42, 54
fourth line would be NI, 28, 28, 31
fifth line would be U, 92, 92, 146
Accuracy is when you hit as close as to the target as you can and precision is when you are on point
Answer:
The percent composition is 21% N, 6% H, 24% S and 49% O.
Explanation:
1st) The molar mass of (NH4)2SO4 is 132g/mol, and it represents the 100% of the mass composition.
In 1 mole of (NH4)2SO4, there are:
- 2 moles of N.
- 8 moles of H.
- 1 mole of S.
- 4 moles of O.
2nd) It is necessary to calculate the mass of each element, multiplying its molar mass by the number of moles:
- 2 moles of N (14g/mol) = 28g
- 8 moles of H (1g/mol) = 8g
- 1 mole of S (32g/mol) = 32g
- 4 moles of O (16g/mol) = 64g
3rd) With a mathematical rule of three we can calculate the percent composition of each element in the molecule of (NH4)2SO4:




In this case, we can calculate the percent composition of Oxygen by subtracting the other percentages, since the total must be 100%.
So, the percent composition is 21% N, 6% H, 24% S and 49% O.