Answer:

Explanation:
Empirical formula of ionic compound formed by two ions
and
is
(for
) of AB (for x = y)
The above empirical formula is in accordance with charge neutrality principle
Here each cation (
and
) can form two ionic compounds by combining with two given anions (
and
).
So the four ionic compounds are: 
Answer:
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓
Ksp = [2s]² . [s] → 4s³
Explanation:
Ag₂CrO₄ → 2Ag⁺ + CrO₄⁻²
Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓ Ksp
That's the expression for the precipitation equilibrium.
To determine the solubility product expression, we work with the Ksp
Ag₂CrO₄ (s) ⇄ 2Ag⁺ (aq) + CrO₄⁻² (aq) Ksp
2 s s
Look the stoichiometry is 1:2, between the salt and the silver.
Ksp = [2s]² . [s] → 4s³
The equation that scientists could use to find the wavelength of the emission lines of the hydrogen atom would be that of Balmer.
The wavelength of the emission lines of the hydrogen atom can be derived using the Balmer series:
1/λ 
Where λ = wavelength,
= Rydberg constant, and n = level of the original orbital.
The equation becomes applicable in getting the wavelength of emitted light when electrons in hydrogen atoms transition from higher (n) orbital to lower orbital (2) levels.
More on the Balmer series can be found here: brainly.com/question/5295294
Answer:
The concentration of the analyte is determined by fitting the absorbance or transmittance obtained by spectrophotometric analysis of the unknown solution into the calibration curve.
Explanation:
In a calibration curve, the instrumental response (absorbance or transmittance), is plotted against the concentration of the analyte (the substance to be measured). The analyst is expected to prepare a series of standard solutions of the analyte within a range of solution concentrations close to the expected concentration of analyte in the unknown solution. The method of least squares may be used to determine the best fit of the line, thus, the concentration of the analyte. This method is only used for the determination of the concentration of coloured substances (spectrophotometry).