To get the answer you use the Law of Raoult.
Raoult's law states that the decrease of the vapor pressure of a liquid is proportional to the molar fraction of the solute.
ΔP = Pa * Xa
Here Pa = 0.038 atm
And Xa = N a / (Na + Nb), where Na is number of moles of A and Nb is number of moles of b
Na = mass of urea / molar mass of urea = 60 g / (molar mass of CH4N2O)
molar mass of CH4N2O = 12 g/mol + 4*1g/mol + 2*14 g/mol + 16 g/mol = 60 g/mol
Na = 60 g / 60 g/mol = 1 mol
Nb = mass of water / molar mass of water = 180g / 18g/mol = 10 mol
Xa = 1 mol / (10 mol + 1 mol) = 1/11 =0.09091
ΔP = Pb * Xa = 0.038 atm * 0.09091 = 0.0035 atm
Then, the final vapor pressure of water is Pb - ΔP = 0.038atm - 0.0035atm = 0.035 atm.
Answer: 0.035 atm
The correct answer is carbon dioxide and water vapor
These negative gasses get modified and then remain in the atmosphere without the possibility of leaving, which is why the greenhouse effect occurs.
Answer:
I think <em><u>alpha</u></em> and <em><u>beta</u></em> is the answer.
Answer : The value of
for the reaction is -959.1 kJ
Explanation :
The given balanced chemical reaction is,

First we have to calculate the enthalpy of reaction
.

![\Delta H^o=[n_{H_2O}\times \Delta H_f^0_{(H_2O)}+n_{SO_2}\times \Delta H_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta H_f^0_{(H_2S)}+n_{O_2}\times \Delta H_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%5D)
where,
= enthalpy of reaction = ?
n = number of moles
= standard enthalpy of formation
Now put all the given values in this expression, we get:
![\Delta H^o=[2mole\times (-242kJ/mol)+2mole\times (-296.8kJ/mol)}]-[2mole\times (-21kJ/mol)+3mole\times (0kJ/mol)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5B2mole%5Ctimes%20%28-242kJ%2Fmol%29%2B2mole%5Ctimes%20%28-296.8kJ%2Fmol%29%7D%5D-%5B2mole%5Ctimes%20%28-21kJ%2Fmol%29%2B3mole%5Ctimes%20%280kJ%2Fmol%29%5D)

conversion used : (1 kJ = 1000 J)
Now we have to calculate the entropy of reaction
.

![\Delta S^o=[n_{H_2O}\times \Delta S_f^0_{(H_2O)}+n_{SO_2}\times \Delta S_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta S_f^0_{(H_2S)}+n_{O_2}\times \Delta S_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28O_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of formation
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (189J/K.mol)+2mole\times (248J/K.mol)}]-[2mole\times (206J/K.mol)+3mole\times (205J/K.mol)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28189J%2FK.mol%29%2B2mole%5Ctimes%20%28248J%2FK.mol%29%7D%5D-%5B2mole%5Ctimes%20%28206J%2FK.mol%29%2B3mole%5Ctimes%20%28205J%2FK.mol%29%5D)

Now we have to calculate the Gibbs free energy of reaction
.
As we know that,

At room temperature, the temperature is 500 K.


Therefore, the value of
for the reaction is -959.1 kJ