If it's the liquid inside:
mercury
Three things that should happen for a chemical reaction to occure :
1. Position of electrons must change
2. Chemical bonds must be formed and broken between atoms and
3. No changes should happen to the nuclei
Correct Answer: option 1 i.e. C
Reason:
The the compound of interest i.e. XCl4, since there are 4 Cl atoms bonded to X. This signifies that the valency of X is 4.
There atomic number of C is 6. It's electronic configuration is giving by 1s2 2s2 2p2. Thus, there are 4 electrons in valence shell of C. This signifies that valency of C is 4. Hence the compound present in present case is CCl4.
Answer:- 335 kcal of heat energy is produced.
Solution:- The balanced equation for the combustion of glucose in presence of oxygen to give carbon dioxide and water is:

From given info, 2803 kJ of heat is released bu the combustion of 1 mol of glucose. We need to calculate the energy produced when 3.00 moles of oxygen react with excess of glucose.
We could solve this using dimensional analysis as:

= 1401.5 kJ
Now, let's convert kJ to kcal.
We know that, 1kcal = 4.184kJ
So, 
= 335 kcal
Hence, 335 kcal of heat energy is produced by the use of 3.00 moles of oxygen gas.