Q= mcΔT
1623 = 33.69g x c x (110.8 - 29.4)
1623 = 2742.366 g•°C x c
c = 0.59j/g•°C
Answer: Ammonia (NH3) and sodium carbonate (Na2CO3), because they accept hydrogen ions but lack hydroxide ions.
Explanation:
i took the test and got it correct :) hope this helps
Answer:
The Correct increasing order of solubility is O2 < Br2 < LiCl < Methanol (CH3OH)
Explanation:
Solubility of compounds or molecules are solely dependent on its inter molecular forces or bonding present in them.
Molecules with Hydrogen bonding usually very soluble in water. Ionic compounds are also very soluble in water because they form ions in solutions. Molecules that possess van der waal forces are usually insoluble in water because they are non-polar.
- O2 (oxygen gas) and Br2 (bromine gas) have van der waal forces in them. Van der waal forces are stronger in Br2 (bromine gas) than O2 (oxygen gas) because Br2 has more number of electrons.
- LiCl is ionic in nature which makes it dissolve in water readily. it easily forms its ions (Li+ and Cl- ) in solutions.
- Methanol (CH3OH) has the highest solubility in water compared to LiCl, Br2 and O2 because it contains Hydrogen bonding which is strongest of all inter molecular forces.
Answer:
i dont no ehh ahh i answer this question and this question is an dibitual sence
Explanation:
ahahalsbaowvapnavskqleveywpwndvsmavalsnsbalsmbsiabsopqmgdijsbsiwbskwnvskabhsksn
mabahslambbsoalnqnmlpigfqjskbdnmxnxb slabslwobdksjwmsnmaksbkakskslanksoqlmmbsjpqloyewqasfhjllmvxxwtyipeorirubamsbsmsnsmsoandbaksnsgaks
Answer:
The answer to your question is 432 g of CO₂
Explanation:
Data
CaCO₃ = 983 g
CaO = 551 g
CO₂ = ?
Balanced reaction
CaCO₃ (s) ⇒ CaO (s) + CO₂ (g)
This reaction is balanced, to solve this problem just remember the Lavoisier Law of conservation of mass that states that the mass of the reactants is equal to the mass of the products.
Mass of reactants = Mass of products
Mass of CaCO₃ = Mass of CaO + Mass of CO₂
Solve for CO₂
Mass of CO₂ = Mass of CaCO₃ - Mass of CaO
Mass of CO₂ = 983 g - 551 g
Simplification
Mass of CO₂ = 432 g