Answer:
It must be high do to the gravity
Explanation:
Answer:
Explanation:
Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.
Let T be tension in the hanging string
T cosθ = mg ( for balancing in vertical direction )
for balancing in horizontal direction
Tsinθ = F ( F is force of repulsion between two charges sphere)
Dividing the two equations
Tanθ = F / mg
tan17 = F / (7.1 x 10⁻³ x 9.8)
F = 21.27 x 10⁻³ N
if q be charge on each sphere , force of repulsion between the two
F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17 = .41 m )
21.27 x 10⁻³ = (9 X 10⁹ x q²) / .41²
q² = .3973 x 10⁻¹²
q = .63 x 10⁻⁶ C
no of electrons required = q / charge on a single electron
= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹
= .39375 x 10¹³
3.9375 x 10¹² .
Answer is B. According to the equation of motion s = vt + 1/2 at2 Where s is distance covered, v is velocity, a is acceleration and t is time taken. So, by putting all the values, we get s = (20)(5) + 1/2 (3)(5)2 s = 100 + 1/2 (3)(25) s = 100 + 1/2 75 s = 100 + 37.5 s = 137.5 meters
Answer:
Yes,in fact visible 'light' is a form of radiation, which can be defined as an energy that travels in the form of electromagnetic waves. It can also be described as a flow of particle-like 'wave-packets', called photons, that travel constantly at the speed of light (about 300 000 kilometres per second).
Explanation:
Some examples of constant velocity (or at least almost- constant velocity) motion include (among many others): • A car traveling at constant speed without changing direction. A hockey puck sliding across ice. A space probe that is drifting through interstellar space.