Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
The sample appears to have gone through 3 half-lives
1st half life: 1000 to 500 g
2nd half life: 500 to 250 g
3rd half life: 250 to 125 g
The duration of a half-life, therefore, can be inferred to be 66 ÷ (3) = 22 days.
After a 4th half life, there will be 125÷2= 62.5 g.
At this point, an additional 22 days will have passed, for a total of 88 days.
Answer is C.
Answer:
tan 249 = 2.61
tan 249 = tan (249 - 180) = tan 69 = 2.61
lol what is this question
X + y = 5
x = 5 - y
2x - y = 7
2(5-y) - y = 7
10 - 2y - y = 7
10 - 3y = 7
10 - 7 = 3y
3 = 3y
y = 1
x + y = 5
x + 1 = 5
x = 5 - 1
x = 4