Answer:
2.1 m/s
Explanation:
Momentum is conserved, so:
m₁ u₁ + m₂ u₂ = (m₁ + m₂) v
(9.1 kg) (6.6 m/s) = (9.1 kg + 19.3 kg) v
v = 2.1 m/s
Answer:
No. Your friend will not hear the clap when he/she sees it.
Explanation:
It takes time for sound waves to go through a large area. It takes longer if people are in the area rather than it is empty.
y=9 because you would need to subtract 3 from both sides because its a -3, adding 3 would cancel it out on one side leaving y=9. 9 is the answer:)-May
Answer:
It would not be possible the cohesion among water molecules by the polar covalent bonding.
Well, to understand this in a better way, let's begin by explaining that water is special due to its properties, which makes this fluid useful for many purposes and for the existence of life.
In this sense, one of the main properties of water is cohesion (molecular cohesion), which is the attraction of molecules to others of the same type. So, water molecule (
) has 2 hydrogen atoms attached to 1 oxygen atom and can stick to itself through hydrogen bonds.
How is this possible?
By the polar covalent bonding, a process in which electrons are shared unequally between atoms, due to the unequal distribution of electrons between atoms of different elements. In other words: slightly positive and slightly negative charges appear in different parts of the molecule.
Now, it can be said that a water molecule has a negative side (oxygen) and a positive side (hydrogen). This is how the oxygen atom tends to monopolize more electrons and keeps them away from hydrogen. Thanks to this polarity, water molecules can stick together.
Answer:
A) i) Dynamic error ≈ 3.1%
ii) phase shift ≈ -12°
B) 79971.89 rad/s
Explanation:
Given data :
Damping ratio = 0.5
natural frequency = 18,000 Hz
<u>a) Calculate the dynamic error and phase shift in accelerometer output at an impart vibration of 4500 Hz</u>
i) Dynamic error
This can be calculated using magnitude ratio formula attached below is the solution
dynamic error ≈ 3.1%
ii) phase shift
This phase shift can be calculated using frequency dependent phase shift formula
phase shift ≈ -12°
<u>B) Determine resonance frequency </u>
Wr = 2
( 18000
) = 79971.89 rad/s
C) The maximum magnitude ratio that the system can achieve