Answer:

Explanation:
Regardless of the type of gas, 1 mole at standard temperature and pressure (STP) occupies a volume of 22.4 liters. In this case the gas is helium (He).
We can set up a ratio.

Multiply by the given number of moles.

The moles of helium will cancel.


Multiply.

5.25 moles of helium gas at STP is 117.6 liters of helium.
Yes i think so
hope i helped
This is because U-235 decays naturally by a process known as alpha radiation. This means that it releases an alpha particle (two neutrons and two protons connected together).
Another reason that U-235 is ideal for producing nuclear power is that unlike most materials, U-235 can undergo induced fission. When a free neutron collides with a U-235 nucleus, the nucleus will usually capture the neutron and split extremely quickly. The splitting of a single U-235 atom can release roughly 200 MeV (million electron volts).
Answer:
none of the above
Explanation:
A system is said to have attained dynamic equilibrium when the forward and reverse reactions proceed at the same rate. That is;
Rate of forward reaction = Rate of reverse reaction
The implication of this is that the concentrations of reactants and products remain constant when dynamic equilibrium is attained in a system. This does not mean that the reactant and product concentrations become equal; it rather means that their concentrations do not significantly change once dynamic equilibrium has been attained.
I assume about 5 atoms are in one molecule of this product