Meteorologist.............................
Answer:
₁₁A
Explanation:
Atomic radius
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons.
This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases.
So in given elements consider A₁₁, B₁₂, C₁₃ ans D₁₇ as sodium, magnesium, aluminium and chlorine. This is the third period and as we move form sodium to chlorine atomic radius decreases. That's why sodium has greater size.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased
Answer:
- % Cobalt (II) Nitrate = 30.62%
Explanation:
To calculate mass percent, first we need to <u>calculate the total mass of the mixture</u>:
- Mass Water ⇒ 0.350 kg Water = 350 g water
- Mass Ammonia⇒We use ammonia's molar mass⇒5.4 mol * 17 g/mol = 91.8 g
- Mass cobalt (II) nitrate ⇒ 195.0 g
Total Mass = Mass Water + Mass Ammonia + Mass Cobalt Nitrate
- Total Mass = 350 g+ 91.8 g+ 195 g = 636.8 g
To calculate each component's mass percent, we divide its mass by the total mass and multiply by 100:
- % Water ⇒ 350/636.8 * 100% = 54.96%
- % Ammonia ⇒ 91.8/636.8 * 100% = 0.14%
- % Cobalt (II) Nitrate ⇒ 195/636.8 * 100% = 30.62%
<span>802 mm Hg X 13.5/1 = 10827 mm H2O X (1 cm/10 mm) = 1083 cm H2O = 1.08 X 10^3 cm H2O</span>
Answer:
The answer is in the explanation.
Explanation:
A solution is defined as the <em>homogeneous mixture </em>of a solute (In this case, NaCl) and the solvent (water).
To prepare 1L of the solution, the student can weigh the 3g of NaCl in the volumetric flask but need to add slowly water to dissolve the NaCl (That is very soluble in water). When all NaCl is dissolved the student must transfer the solution to the 1L volumetric flask. Then, you must add more water to the beaker until "Clean" all the solute of the beaker to transfer it completely to the volumetric flask.