Answer:
7.94 ft^3/ s.
Explanation:
So, we are given that the '''model will be 1/6 scale (the modeled valve will be 1/6 the size of the prototype valve)'' and the prototype flow rate is to be 700 ft3 /s. Then, we are asked to look for or calculate or determine the value for the model flow rate.
Note that we are to use Reynolds scaling for the velocity as par the instruction from the question above.
Therefore; kp/ks = 1/6.
Hs= 700 ft3 /s and the formula for the Reynolds scaling => Hp/Hs = (kp/ks)^2.5.
Reynolds scaling==> Hp/ 700 = (1/6)^2.5.
= 7.94 ft^3/ s
Answer:
cpct gvxjjxjhdfjokjdzfjiyddzzsjhxf
Answer:
radius = 9.1 ×
m
Explanation:
given data
applied load = 5560 N
flexural strength = 105 MPa
separation between the support = 45 mm
solution
we apply here minimum radius formula that is
radius =
.................1
here F is applied load and is length
put here value and we get
radius =
solve it we get
radius = 9.1 ×
m
Answer:
The ability to read electrical schematics is a really useful skill to have. To start developing your schematic reading abilities, it's important to memorize the most common schematic symbols. ... You should also be able to get a rough idea of how the circuit works, just by looking at the schematic.
Explanation: