Answer:
The Young's Modulus of a material is a fundamental property of every material that cannot be changed. It is dependent upon temperature and pressure however. The Young's Modulus (or Elastic Modulus) is in essence the stiffness of a material. In other words, it is how easily it is bended or stretched.
Explanation:
Have a great day
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
External depreciation may be defined as a loss in value caused by an undesirable or hazardous influence offsite.
<h3>What is depreciation?</h3>
Depreciation may be defined as a situation when the financial value of an acquisition declines over time due to exploitation, fray, and incision, or obsolescence.
External depreciation may also be referred to as "economic obsolescence". It causes a negative influence on the financial value gradually.
Therefore, it is well described above.
To learn more about Depreciation, refer to the link:
brainly.com/question/1203926
#SPJ1
Answer:
a.)
US Sieve no. % finer (C₅ )
4 100
10 95.61
20 82.98
40 61.50
60 42.08
100 20.19
200 6.3
Pan 0
b.) D10 = 0.12, D30 = 0.22, and D60 = 0.4
c.) Cu = 3.33
d.) Cc = 1
Explanation:
As given ,
US Sieve no. Mass of soil retained (C₂ )
4 0
10 18.5
20 53.2
40 90.5
60 81.8
100 92.2
200 58.5
Pan 26.5
Now,
Total weight of the soil = w = 0 + 18.5 + 53.2 + 90.5 + 81.8 + 92.2 + 58.5 + 26.5 = 421.2 g
⇒ w = 421.2 g
As we know that ,
% Retained = C₃ = C₂×
∴ we get
US Sieve no. % retained (C₃ ) Cummulative % retained (C₄)
4 0 0
10 4.39 4.39
20 12.63 17.02
40 21.48 38.50
60 19.42 57.92
100 21.89 79.81
200 13.89 93.70
Pan 6.30 100
Now,
% finer = C₅ = 100 - C₄
∴ we get
US Sieve no. Cummulative % retained (C₄) % finer (C₅ )
4 0 100
10 4.39 95.61
20 17.02 82.98
40 38.50 61.50
60 57.92 42.08
100 79.81 20.19
200 93.70 6.3
Pan 100 0
The grain-size distribution is :
b.)
From the diagram , we can see that
D10 = 0.12
D30 = 0.22
D60 = 0.12
c.)
Uniformity Coefficient = Cu = 
⇒ Cu = 
d.)
Coefficient of Graduation = Cc = 
⇒ Cc =
= 1