Answer:
Class of fit:
Interference (Medium Drive Force Fits constitute a special type of Interference Fits and these are the tightest fits where accuracy is important).
Here minimum shaft diameter will be greater than the maximum hole diameter.
Medium Drive Force Fits are FN 2 Fits.
As per standard ANSI B4.1 :
Desired Tolerance: FN 2
Tolerance TZone: H7S6
Max Shaft Diameter: 3.0029
Min Shaft Diameter: 3.0022
Max Hole Diameter:3.0012
Min Hole Diameter: 3.0000
Max Interference: 0.0029
Min Interference: 0.0010
Stress in the shaft and sleeve can be considered as the compressive stress which can be determined using load/interference area.
Design is acceptable If compressive stress induced due to selected dimensions and load is less than compressive strength of the material.
Explanation:
Answer:
Explanation:
For ligation process the 1:3 vector to insert ratio is the good to utilize . By considering that we can take 1 ratio of vector and 3 ratio of insert ( consider different insert size ) and take 10 different vials of ligation ( each calculated using different insert size from low to high ) and plot a graph for transformation efficiency and using optimum transformation efficiency we can find out the insert size.
Answer:
s= 20.4 m
Explanation:
First lets write down equations for each ball:
s=so+vo*t+1/2a_c*t^2
for ball A:
s_a=30+5*t+1/2*9.81*t^2
for ball B:
s_b=20*t-1/2*9.81*t^2
to find time deeded to pass we just put that
s_a = s_b
30+5*t-4.91*t^2=20*t-4.9*t^2
t=2 s
now we just have to put that time in any of those equations an get distance from the ground:
s = 30 + 5*2 -1/2*9.81 *2^2
s= 20.4 m