Answer:
C
Explanation:
N = Na.P/A------(1)
Na = avogadro's number = 6.02210²³
P = density
A = atomic weight of metal
When we substitute into equation 1 above we get
1.0x10²⁹atoms/m³
From here we calculate the number of vacancies
T = 1000⁰c = 1273K
The formula to use is
Nv= Nexo(Qt/K.T) -----(2)
Qt = 1.22eV
K = Boltzmann's constant = 8.6210x10^-5
When we substitute values into equation 2
We get Nv = 1.49 x 10²⁴m-3
Therefore option c is correct
Check attachment for a more detailed calculation of this question
Answer:
https://quizlet.com/148993376/the-nine-distinct-periods-of-time-flash-cards/
Explanation:
you can find them all : )
Answer:
d = 2.69 mm
Explanation:
Assuming the cable is rated with a factor of safety of 1.
The stress on the cable is:
σ = P/A
Where
σ = normal stress
P: load
A: cross section
The section area of a circle is:
A = π/4 * d^2
Then:
σ = 4*P / (π*d^2)
Rearranging:
d^2 = 4*P / (π*σ)

Replacing:

0.106 inches = 2.69 mm
D
Step by step explanation
is the volume of the sample when the water content is 10%.
<u>Explanation:</u>
Given Data:

First has a natural water content of 25% =
= 0.25
Shrinkage limit, 

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,
![V \propto[1+e]](https://tex.z-dn.net/?f=V%20%5Cpropto%5B1%2Be%5D)
------> eq 1

The above equation is at
,

Applying the given values, we get

Shrinkage limit is lowest water content

Applying the given values, we get

Applying the found values in eq 1, we get

