Answer:
Explanation:
so a mechanical wave transfers energy through a medium but unlike other waves that move through very long distances
the distance of the mechanical wave is different
1) The correct answer is
<span>C) The particles are not able to move out of their positions relative to one another, but do have small vibrational movements.
In solids, in fact, particles are bound together so they cannot move freely. However, they can move around their fixed position with small vibrational movements, whose intensity depends on the temperature of the substance (the higher the temperature, the more intense the vibrations). For this reason, we say that matter moves also in solid state.
2) The correct answer is
</span><span>A) increase the concentration of both solutions
In fact, when we increase the concentration of both solutions, we increase the number of particles that react in both solutions; as a result, the speed of the reaction will increase.
3) The correct answer is
</span><span>C) gas → liquid → solid
In gases, in fact, particles are basically free to move, so the intermolecular forces of attraction are almost negligible. In liquids, particles are still able to move, however the intermolecular forces of attraction are stronger than in gases. Finally, in solids, particles are bound together, so they are not free to move and the intermolecular forces of attraction are very strong. </span>
Answer:
hope this helps
Explanation:
The elements in the modern periodic table are arranged in order of their atomic numbers, which is the number of protons in the nuclei of the atoms of a an element. Each element has a unique atomic number. The atomic numbers are also whole numbers.
<span>It also doubles
The gravitational force between two masses is expressed as:
F = G*m1*m2/r^2
where
F = Force between the two masses
m1 = Mass of object 1
m2 = Mass of object 2
r = distance between centers of object 1 and object 2
G = Gravitational constant
The exact values of G, m1, m2, and r don't matter since all except for m1 is held constant. And when m1 suddenly doubles, the force attracting the two object to each other also doubles.</span>