
dissolves in water to give

and

ions according to the following reaction:

-------->

+ 2

So, according to the above reaction, 1 mole of

produce 2 moles of

ion,
So, 0.3 mole will give = 0.3 x 2 = 0.6 moles of

ion
So, Molar concentration =

Note: 1L = 1000mL
Orange i believe so or if not blue
Answer:
The thermal energy (heat) needed, to raise the temperature of oil of mass 'm' kilogram and specific heat capacity 'c' from 20°C to 180°C is 160·m·c joules
Explanation:
The heat capacity, 'C', of a substance is the heat change, ΔQ, required by a given mass, 'm', of the substance to produce a unit temperature change, ΔT
∴ C = ΔQ/ΔT
ΔQ = C × ΔT
C = m × c
Where;
c = The specific heat capacity
ΔT = The temperature change = T₂ - T₁
∴ ΔQ = m × c × ΔT
Therefore, the thermal energy (heat) needed, ΔQ, to raise the temperature of oil of mass 'm' kilogram and specific heat capacity, 'c' from 20°C to 180°C is given as follows;
ΔQ = m × c × (180° - 20°) = 160° × m·c
ΔQ = 160·m·c joules
Answer:
molarity = 0.385 moles/kg
Explanation:
Assume that the volume of the aqueous solution given is 1 liter = 1000 ml
Now, density can be calculated using the following rule:
density = mass / volume
Therefore:
mass = density * volume = 1.23 * 1000 = 1230 grams
Now, 0.467 m/L * 1L = 0.467 moles of HCl
We will get the mass of the 0.467 moles of HCl as follows:
mass = molar mass * number of moles = (1+35.5)*0.467 = 17.0455 grams
Now, we have the mass of the solution (water + HCl) calculated as 1230 grams and the mass of the HCl calculated as 17.0455 grams. We can use this information to get the mass of water as follows:
mass of water = 1230 - 17.0455 = 1212.9545 grams
Finally, we will get the molarity as follows:
molarity = number of moles of solute / kg of solution
molarity = (0.467) / (1212.9594*10^-3)
molarity = 0.385 mole/kg
Hope this helps :)
Answer:
1. Is red blood cells
2. Is high pressure
Explanation:
In the atrium deoxygenated blood is pumped