Answer:
A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is 0.67 atm.
Step by Step Explanation?
Boyle's law states that in constant temperature the variation volume of gas is inversely proportional to the applied pressure.
The formula is,
P₁ x V₁ = P₂ × V₂
Where,
P₁ is initial pressure = 1 atm
P2 is final pressure = ? (Not Known)
V₁ is initial volume = 10 L
V₂ is final volume = 15 L
Now put the values in the formula,
\begin{gathered}\rm 1\times 10 = P_2\times 15\\\\\rm P_2 = \frac{10}{15\\} \\\\\rm P_2 = 0.67\end{gathered]
Therefore, the answer is 0.67 atm.
Answer : The value of
for the given reaction is, 0.36
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)
First we have to calculate the concentration of
.



Now we have to calculate the value of
for the given reaction.
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)


Therefore, the value of
for the given reaction is, 0.36
Hello. This question is incomplete. The full question is:
"Consider the following reaction. 2NO(g) + 2H2(g) → N2(g) + 2H2O(g)
A proposed reaction mechanism is: NO(g) + NO(g) N2O2(g) fast N2O2(g) + H2(g) → N2O(g) + H2O(g) slow N2O(g) + H2(g) → N2(g) + H2O(g) fast
What is the rate expression? A. rate = k[H2] [NO]2 B. rate = k[N2O2] [H2] C. rate = k[NO]2 [H2]2 D. rate = k[NO]2 [N2O2]2 [H2]"
Answer:
A. rate = k[H2] [NO]2
Explanation:
A reaction mechanism is a term used to describe a set of phases that make up a chemical reaction. In these phases a detailed sequence of each step is shown, composed of several complementary reactions, which occur during a chemical reaction.
These mechanisms are directly related to chemical kinetics and allow changes in reaction rates to be observed in advance.
Reaction rate, on the other hand, refers to the speed at which chemical reactions occur.
Based on this, we can observe through the reaction mechanism shown in the question above, that the action "k [H2] [NO] 2" would have no changes in the reaction rate.
Answer:
- <em>The net charge of the ionic compound calcium fluoride is </em><u><em>zero (0).</em></u>
<em>Explanation:</em>
<em>Ionic compounds,</em> such as covalent ones, have zero net charge; this is, they are neutral.
Substances with net positive charge are cations and substances with net negative charge are anions.
The charges in the <em>ionic compound calcium flouride</em> are distributed in this way:
- Calcium charge: Ca²⁺: this is, each calcium ion has a 2 positive charge
- Fluoride charge: F⁻: each fluoride ion has a 1 negative charge.
- Then, the <em>net charge</em> is: 1 × (2+) + 2 × (1-) = +2 - 2 = 0.
So, a two positve charge, from one calcium ion, is equal to two negative charges, from two fluoride tions, yielding a <u>zero net charge</u>.
Answer:
-81.5 degrees C or 191.5 K
Explanation:
We want to use Charles' gas law: V/T = V/T
Our initial volume is 3.20 L, and our initial temperature is 125 degrees C, or 125 + 273 = 398 degrees Kelvin.
Our new Volume is 1.54 L, but we don't know what the temperature is. So, we use the equation:
3.20 L / 398 K = 1.54 L / T ⇒ Solving for T, we get: T = 191.5 K
If we want this in degrees Celsius, we subtract 273: 191.5 - 273 = -81.5 degrees C