1. Hydrogen has 1 electron.
Answer:
35.75 days
Explanation:
From the given information:
For first-order kinetics, the rate law can be expressed as:

Given that:
the rate degradation constant = 0.12 / day
current concentration C = 0.05 mg/L
initial concentration C₀ = 3.65 mg/L

㏑(0.01369863014) = -(0.12) t
-4.29 = -(0.12)
t = -4.29/-0.12
t = 35.75 days
Answer:
ya, it's gravity. What is the problem??
Explanation:
I believe the answer is C, n = 3, l = 3, m = 3. The magnetic quantum number, or
<span>ml</span>, can only take values that range from <span>−l</span> to <span>+l</span>, as you can see in the table above.
For option C), the angular momentum quantum number of equal to ++2<span>, which means that <span>ml</span> can have a maximum value of </span>+2<span>. Since it is given as having a value of </span>+3**, this set of quantum numbers is not a valid one.
The other three sets are valid and can correctly describe an electron.
Answer:
M
Explanation:
Concentration of
= 0.020 M
Constructing an ICE table;we have:
![Cu^{2+}+4NH_3_{aq} \rightleftharpoons [Cu(NH_3)_4]^{2+}_{(aq)}](https://tex.z-dn.net/?f=Cu%5E%7B2%2B%7D%2B4NH_3_%7Baq%7D%20%5Crightleftharpoons%20%5BCu%28NH_3%29_4%5D%5E%7B2%2B%7D_%7B%28aq%29%7D)
Initial (M) 0.020 0.40 0
Change (M) - x - 4 x x
Equilibrium (M) 0.020 -x 0.40 - 4 x x
Given that: 
![K_f } = \frac{[Cu(NH_3)_4]^{2+}}{[Cu^{2+}][NH_3]^4}](https://tex.z-dn.net/?f=K_f%20%7D%20%3D%20%5Cfrac%7B%5BCu%28NH_3%29_4%5D%5E%7B2%2B%7D%7D%7B%5BCu%5E%7B2%2B%7D%5D%5BNH_3%5D%5E4%7D)

Since x is so small; 0.40 -4x = 0.40
Then:








M