Answer:
A. percentage mass of iron = 5.17%
percentage mass of sand = 8.62%
percentage mass of water = 86.205%
B. (Iron + sand + water) -------> ( iron + sand) ------> sand
C. The step of separation of iron and sand
Explanation:
A. Percentage mass of the mixtures:
Total mass of mixture = (15.0 + 25.0 + 250.0) g =290.0 g
percentage mass of iron = 15/290 * 100% = 5.17%
percentage mass of sand = 25/290 * 100% = 8.62%
percentage mass of water = 250/290 * 100% = 86.205%
B. Flow chart of separation procedure
(Iron + sand + water) -------> separation by filtration using filter paper and funnel to remove water --------> ( iron + sand) -----------> separation using magnet to remove iron ------> sand
C. The step of separation of iron and sand by magnetization of iron will have the highest amount of error because during the process, some iron particles may not readily be attracted to the magnet as they may have become interlaced in-between sand grains. Also, some sand particle may also be attracted to the magnet as they are are borne on iron particles.
Assuming that the reactants are:
(NH4)2SO4 (aq) + Ba(NO3)2 (aq)
and the products are:
BaSO4 (s) + 2NH4NO3 (aq),
then you will have to determine which product is insoluble. You should have access to solubility rules to help you determine this.
According to the solubility rules, the following elements are considered insoluble when paired with SO4:
Sr^2+, Ba^2+, Pb^2+, Ag^2+, and Ca^2+
Therefore, the precipitate will be BaSO4 (s).
Because potassium is more reactive than hydrogen
Answer:
The sun'll likely absorb the radiation if it is close enough (Which it will never be)
Explanation:
C. NaOH ammmonia is also an base but not as strong as NaOH