Yes. Stars use fusion to create nuclear energy, which is what makes them "alive". The older they are, the "bigger" the element in them is. Hydrogen turns into Helium, and when hydrogen is used up, the helium starts fusing into bigger elements. it stops at iron however. Once stars start fusing silicon to iron, it is doomed because it takes more energy than it gives off.
Answer:
Mass = 255 g
Explanation:
Given data:
Number of moles of nitrogen = 7.5 mol
Mass of ammonia formed = ?
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
Now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
7.5 : 2/1×7.5 = 15
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 15 mol × 17 g/mol
Mass = 255 g
Answer:
Coefficient of
is more than 4
Explanation:
Oxidation: 
- Balance charge:
......(1)
Reduction: 
- Balance Cr:

- Balance O and H in acidic medium:

- Balance charge:
.......(2)
gives balanced equation:

So coefficient of
is more than 4
A catalyst will speed up the activation energy and therefore speed up the reaction. The products will form fast because of this.