The chemical equation is said to be balanced if the number of atoms in the reactants and products is the same
<h3>Further explanation</h3>
Equation balanced ⇒ total number of atoms in reactants(on the left)= total number of atoms in products(on the right)
H₂+O₂---> H₂O
Reactants : H₂, O₂
Products : H₂O
not balanced
H₂O₂ ---> H₂O+O₂
Reactants : H₂O₂
Products : H₂O, O₂
not balanced
Na+O₂ ---> Na₂O
Reactants : Na, O₂
Products : Na₂O
not balanced
N₂+H₂ ---> NH₃
Reactants : N₂, H₂
Products : NH₃
not balanced
P₄+O₂---> P₄O₁₀
Reactants : P₄, O₂
Products : P₄O₁₀
not balanced
Fe+H₂O ----> Fe₃O₄ + H₂
Reactants : Fe, H₂O
Products : Fe₃O₄
not balanced
Answer:
87.3 calories of heat is required.
Explanation:
Heat = mcΔT
m= mass, c = specific heat of silver, T = temperature
H= 57.8 g * 0.057 cal/g°C * ( 43.5 - 17 °C)
H = 57.8 * 0.057 * 26.5
H = 87.3069 cal.
The heat required to raise the temperature of 57.8 g of silver from 17 °C to 43.5 °C is 87.3 calories.
I think the answer is 7mm but I'm not sure.
Have a great day!
Answer:
The explanation of the processes in which pigments are involved (capturing light and forming ATP and NADPH) is given in the following paragraphs)
Explanation:
Pigments are molecules with the capacity of absorbing light. Each pigment captures light of a specific wavelength. Plants contain different types of pigments like chlorophylls, xanthophylls, carotenoids, and others.
Chloroplasts (organelles present in cells of plants), contain pigmants that absorb solar radiation, triggering a series of reactions collectively known as photosynthesis. When light incides on a pigment, an electron of this molecules is excitated, goes into another level of energy and starts to pass through a series of carrier molecules to finally to a final aceptor of electrons. During this transport, part of the energy contained in the electron is used to generates a hydrogen gradient that provides energy. As a result of these processes, a molecule that is called NADP+ accepts two electrons and an hydrogen to form NADPH, while another molecule known as ADP captures an atom of phosphorous and gives rise to ATP (through the action of a protein called ATP sintase)..