Answer:
Constraints are restrictions that need to be placed upon variables
Explanation:
Constraints are restrictions (limitations, boundaries) that need to be placed upon variables used in equations that model real-world situations. It is possible that certain solutions which make an equation true mathematically, may not make any sense in the context of a real-world word problem.
Answer:
7.7439×10⁻³¹ m
Explanation:
The expression for Heisenberg uncertainty principle is:

Where m is the mass of the microscopic particle
h is the Planks constant
Δx is the uncertainty in the position
Δv is the uncertainty in the velocity
Given:
mass = 0.68 g = 0.68×10⁻³ kg
Δv = 0.1 m/s
Δx= ?
Applying the above formula as:

<u>Δx = 7.7439×10⁻³¹ m</u>
Answer:
a) Se²⁻> S²⁻ > O²
b) Te²⁻ > I- >Cs+
c) Cs+ > Ba²⁺ > Sr²⁺
Explanation:
(a) Se²⁻, S²⁻, O²⁻
In general, ionic radius decreases with increasing positive charge.
As the charge on the ion becomes more positive, there are fewer electrons.
The ion has a smaller radius. In general, ionic radius increases with increasing negative charge.
For ions of the same charge (e.g. in the same group) the size increases as we go down a group in the periodic table
Se²⁻> S²⁻ > O²
(b) Te²⁻, Cs⁺, I⁻
Te²⁻ > I- >Cs+
Te2- hast the biggest size, because of the double negative charge.
Cs+ has the smallest size since it has the most positive charge, compared to Te2- and I-.
(c) Sr²⁺, Ba²⁺, Cs⁺
Cs+ > Ba²⁺ > Sr²⁺
Cs+ has the biggest size, because its more downward (compared to Sr2+) and more to the left (compared) ot Ba2+.
Sr2+ has the smallest size because it's more upwords (compared to Cs+ and Ba2+)
Answer: skeleton equation
Explanation:
Constant:
Test tubes
Independent:
<span>volume of gas
Dependent:
</span>
<span>amount of H2O2 </span>