Answer:
The protonated form is predominant when aspirin is absorbed more readily. The ratio of conjugate base to acid is 1 to 100.
Explanation:
Aspirin is more readily absorbed when it is protonated, that is when pH is lower than pKa (<em>more H⁺ available in the medium</em>). We can confirm this using Henderson-Hasselbalch equation for pH = 1.5:

When aspirin is absorbed more readily the ratio of conjugate base to acid is 1 to 100, being the acid the <em>predominant</em> form.
Answer:
2C4H10 + 13O2 ----> 4CO2 + 10H2O
The coefficient of oxygen in the balanced equation is 13
Let A be the 80% solution and B be the 20% solution and P be the produce solution of 70%. Va and Vb and Vp are the volumes of A and B and P respectively.
Va + 60 = Vp
0.7Vp = 0.8Va + 0.2(60)
Substituting the value of Vp from the first equation:
0.7(Va + 60) = 0.8Va + 12
30 = 0.1Va
Va = 300 gallons
Answer:
pH = -log₁₀ [H⁺]
Explanation:
pH is a value in chemistry used in to measure solution trying to determine each quality, purity, risks for health of some products, etc.
As you write in the question, [H⁺] = 10^(-pH)
Using logarithm law (log (m^(p) = p log(m):
log₁₀ [H⁺] = -pH
And
<h3>pH = -log₁₀ [H⁺]</h3>