They're based on hydrogen.
Answer:
The answer is
<h2>1.38 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of liquid = 138 g
volume = 100 mL
The density of the liquid is

We have the final answer as
<h3>1.38 g/mL</h3>
Hope this helps you
Answer:
We will expect 4 moles of MgO to be formed (option b).
Explanation:
Step 1: The balanced equation
2Mg + O2 → 2MgO
Step 2: Data given
Number of moles of Magnesium = 4 moles
Oxygen = in excess → this means Magnesium is the limiting reactant
Magnesium will completely be consumed ( 4 moles). There will remain 0 moles.
For 2 moles of magnesium consumed, we need 1 mole of oxygen to produce 2 moles of MgO.
For 4 moles of magnesium, we need 4/2 = 2 moles of oxygen.
For 4 moles of magnesium, we will produce 4/1 = 4 moles of MgO
We will expect 4 moles of MgO to be formed (option b).
CH3 is a methyl radical, which is formed by removing the hydrogen atom from methane, so the hybridization is SP^3
Answer:
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Explanation:
The surface tension of these substances at 20 °C given in mN/m, is as follows:
The surface tension of Methanol is 22.70
The surface tension of Tetrabromomethane is 26.95
The surface tension of Glycerol is 64.00
The surface tension of Chloroform is 27.50
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)